Internet Engineering Task Force (IETF) G. Muenz

Request for Comments: 6728 TU Muenchen
Category: Standards Track B. Claise
ISSN: 2070-1721 P. Aitken

Cisco Systems, Inc.
October 2012

Configuration Data Model for the IP Flow Information Export (IPFIX)
and Packet Sampling (PSAMP) Protocols

Abstract

This document specifies a data model for the IP Flow Information
Export (IPFIX) and Packet Sampling (PSAMP) protocols. It is for
configuring and monitoring Selection Processes, Caches, Exporting
Processes, and Collecting Processes of IPFIX- and PSAMP-compliant
Monitoring Devices using the Network Configuration Protocol
(NETCONF). The data model is defined using UML (Unified Modeling
Language) class diagrams and formally specified using YANG. The
configuration data is encoded in Extensible Markup Language (XML).

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6728.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must

Muenz, et al. Standards Track [Page 1]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. Introduction 3
1.1. IPFIX Documents Overview 4
1.2. PSAMP Documents Overview 5
2. Terminology 5
3. Structure of the Configuration Data Model 7
3.1. Metering Process Decomposition in Selection Process
andCache........................ 8
3.2. UML Representation 10
3.3. Exporter Configuration 15
3.4. Collector Configuration 17
4. Configuration Parameters 18
4.1. ObservationPointClass 18
4.2, SelectionProcessClass 20
421. SelectorClass 21
42.2. SamplerClasses 22
4.2.3. FilterClasses 23
43. CacheClass....................... 25
4.3.1. ImmediateCacheClass 26
4.3.2. TimeoutCache, NaturalCache, and PermanentCache
Class......... ..o, 27
4.3.3. CacheLayoutClass.................. 29
4.4. ExportingProcessClass 32
4.4.1. SctpExporterClass 34
4.4.2. UdpExporterClass 36
4.4.3. TcpExporterClass 37
4.4.4. FileWriterClass 38
445. OptionsClass 39
4.5. CollectingProcessClass 41
45.1. SctpCollectorClass 42
45.2. UdpCollectorClass 43

Muenz, et al. Standards Track [Page 2]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

45.3. TcpCollectorClass 44
45.4. FileReaderClass 45
4.6. Transport Layer Security Class 46
4.7. Transport SessionClass 49
48. TemplateClass 53
5. Adaptation to Device Capabilities 54
6. YANG Module of the IPFIX/PSAMP Configuration Data Model . .. 57
7. Examples 104
7.1. PSAMPDevice 104
7.2. IPFIXDevicecoiviiinnnn. 115
7.3. Export of Flow Records and Packet Reports 118
7.4. Collector and File Writer 121
7.5. Deviations 122
8. Security Considerations 122
9. IANA Considerations 124
10. Acknowledgements 125
11.References 125
11.1. Normative References 125
11.2. Informative References 126

1. Introduction

IPFIX- and PSAMP-compliant Monitoring Devices (routers, switches,
monitoring probes, Collectors, etc.) offer various configuration
possibilities that allow adapting network monitoring to the goals and
purposes of the application, such as accounting and charging, traffic
analysis, performance monitoring, and security monitoring. The use
of a common vendor-independent configuration data model for IPFIX-
and PSAMP-compliant Monitoring Devices facilitates network management
and configuration, especially if Monitoring Devices of different
implementers or manufacturers are deployed simultaneously. On the
one hand, a vendor-independent configuration data model helps to
store and manage the configuration data of Monitoring Devices in a
consistent format. On the other hand, it can be used for local and
remote configuration of Monitoring Devices.

The purpose of this document is the specification of a vendor-
independent configuration data model that covers the commonly
available configuration parameters of Selection Processes, Caches,
Exporting Processes, and Collecting Processes. In addition, it
includes common states parameters of a Monitoring Device. The
configuration data model is defined using UML (Unified Modeling
Language) class diagrams [UML], while the actual configuration data
is encoded in Extensible Markup Language (XML)
[W3C.REC-xmlI-20081126]. An XML document conforming to the
configuration data model contains the configuration data of one
Monitoring Device.

Muenz, et al. Standards Track [Page 3]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

The configuration data model is designed for use with the NETCONF
protocol [RFC6241] in order to configure remote Monitoring Devices.
With the NETCONF protocaol, it is possible to transfer a complete set
of configuration data to a Monitoring Device, to query the current
configuration and state parameters of a Monitoring Device, and to
change specific parameter values of an existing Monitoring Device
configuration.

In order to ensure compatibility with the NETCONF protocol [RFC6241],
YANG [RFC6020] is used to formally specify the configuration data

model. If required, the YANG specification of the configuration data

model can be converted into XML Schema language
[W3C.REC-xmlschema-0-20041028] or DSDL (Document Schema Definition
Languages) [RFC6110], for example, by using the pyang tool

[YANG-WEB]. YANG provides mechanisms to adapt the configuration data
model to device-specific constraints and to augment the model with
additional device-specific or vendor-specific parameters.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

1.1. IPFIX Documents Overview

The IPFIX protocol [RFC5101] provides network administrators with
access to IP Flow information. The architecture for the export of
measured IP Flow information out of an IPFIX Exporting Process to a
Collecting Process is defined in [RFC5470], per the requirements

defined in [RFC3917]. The IPFIX protocol [RFC5101] specifies how
IPFIX Data Records and Templates are carried via a number of

transport protocols from IPFIX Exporting Processes to IPFIX

Collecting Process. IPFIX has a formal description of IPFIX

Information Elements, their name, type, and additional semantic
information, as specified in [RFC5102]. [RFC6615] specifies the

IPFIX Management Information Base, consisting of the IPFIX MIB module
and the IPFIX SELECTOR MIB module. Finally, [RFC5472] describes what
type of applications can use the IPFIX protocol and how they can use

the information provided. It furthermore shows how the IPFIX

framework relates to other architectures and frameworks. Methods for
efficient export of bidirectional Flow information and common

properties in Data Records are specified in [RFC5103] and [RFC5473],
respectively. [RFC5610] addresses the export of extended type
information for enterprise-specific Information Elements. The

storage of IPFIX Messages in a file is specified in [RFC5655].

Muenz, et al. Standards Track [Page 4]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

1.2. PSAMP Documents Overview

The framework for packet selection and reporting [RFC5474] enables
network elements to select subsets of packets by statistical and

other methods, and to export a stream of reports on the selected
packets to a Collector. The set of packet selection techniques
(Sampling, Filtering, and hashing) standardized by PSAMP is described
in [RFC5475]. The PSAMP protocol [RFC5476] specifies the export of
packet information from a PSAMP Exporting Process to a PSAMP
Collector. Instead of exporting PSAMP Packet Reports, the stream of
selected packets may also serve as input to the generation of IPFIX
Flow Records. Like IPFIX, PSAMP has a formal description of its
Information Elements, their name, type, and additional semantic
information. The PSAMP information model is defined in [RFC5477].
[RFC6727] specifies the PSAMP MIB module as an extension of the IPFIX
SELECTOR MIB module defined in [RFC6615].

2. Terminology

This document adopts the terminologies used in [RFC5101], [RFC5103],
[RFC5655], and [RFC5476]. As in these documents, all specific terms
have the first letter of a word capitalized when used in this

document. The following listing indicates in which references the
definitions of those terms that are commonly used throughout this
document can be found:

o Definitions adopted from [RFC5101]:
Collection Process
Collector

Data Record
Exporter

Flow

Flow Key

Flow Record
Information Element
IPFIX Device

IPFIX Message
Observation Domain
Observation Point
(Options) Template

E o B R T N T R

o Definitions adopted from [RFC5103]:
* Reverse Information Element

o Definitions adopted from [RFC5655]:

* File Reader
* File Writer

Muenz, et al. Standards Track [Page 5]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

o Definitions adopted from [RFC5476]:

Filtering

Observed Packet Stream

Packet Report

PSAMP Device

Sampling

Selection Process

Selection Sequence

Selection Sequence Report Interpretation
Selection Sequence Statistics Report Interpretation
Selection State

Selector, Primitive Selector, Composite Selector
Selector Report Interpretation

L T N S R L N I N

The terms Metering Process and Exporting Process have different
definitions in [RFC5101] and [RFC5476]. In the scope of this
document, these terms are used according to the following
definitions, which cover the deployment in both PSAMP Devices and
IPFIX Devices:

Metering Process

The Metering Process generates IPFIX Flow Records or PSAMP Packet
Reports, depending on its deployment as part of an IPFIX Device or
PSAMP Device. Inputs to the process are packets observed at one

or more Observation Points, as well as characteristics describing

the packet treatment at these Observation Points. If IPFIX Flow
Records are generated, the Metering Process MUST NOT aggregate
packets observed at different Observation Domains in the same

Flow. The function of the Metering Process is split into two

functional blocks: Selection Process and Cache.

Exporting Process

Depending on its deployment as part of an IPFIX Device or PSAMP
Device, the Exporting Process sends IPFIX Flow Records or PSAMP
Packet Reports to one or more Collecting Processes. The IPFIX

Flow Records or PSAMP Packet Reports are generated by one or more
Metering Processes.

In addition to the existing IPFIX and PSAMP terminology, the
following terms are defined:

Cache
The Cache is a functional block in a Metering Process that

generates IPFIX Flow Records or PSAMP Packet Reports from a
Selected Packet Stream, in accordance with its configuration. If

Muenz, et al. Standards Track [Page 6]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

Flow Records are generated, the Cache performs tasks like creating
new records, updating existing ones, computing Flow statistics,
deriving further Flow properties, detecting Flow expiration,

passing Flow Records to the Exporting Process, and deleting Flow
Records. If Packet Reports are generated, the Cache performs
tasks like extracting packet contents and derived packet

properties from the Selected Packet Stream, creating new records,
and passing them as Packet Reports to the Exporting Process.

Cache Layout

The Cache Layout defines the superset of fields that are included
in the Packet Reports or Flow Records maintained by the Cache.
The fields are specified by the corresponding Information
Elements. In general, the largest possible subset of the
specified fields is derived for every Packet Report or Flow
Record. More specific rules about which fields must be included
are given in Section 4.3.3.

Monitoring Device

A Monitoring Device implements at least one of the functional
blocks specified in the context of IPFIX or PSAMP. In particular,
the term Monitoring Device encompasses Exporters, Collectors,
IPFIX Devices, and PSAMP Devices.

Selected Packet Stream

The Selected Packet Stream is the set of all packets selected by a
Selection Process.

3. Structure of the Configuration Data Model

The IPFIX reference model in [RFC5470] describes Metering Processes,
Exporting Processes, and Collecting Processes as functional blocks of
IPFIX Devices. The PSAMP framework [RFC5474] provides the
corresponding information for PSAMP Devices and introduces the
Selection Process as a functional block within Metering Processes.

In Section 2 of the document, the Cache is defined as another

functional block within Metering Processes. Further explanations

about the relationship between Selection Process and Cache are given
in Section 3.1. IPFIX File Reader and File Writer are defined as

specific kinds of Exporting and Collecting Processes in [RFC5655].

Monitoring Device implementations usually maintain the separation of
various functional blocks, although they do not necessarily implement
all of them. Furthermore, they provide various configuration
possibilities; some of them are specified as mandatory by the IPFIX

Muenz, et al. Standards Track [Page 7]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

protocol [RFC5101] or PSAMP protocol [RFC5476]. The configuration
data model enables the setting of commonly available configuration
parameters for Selection Processes, Caches, Exporting Processes, and
Collecting Processes. In addition, it allows specifying the

composition of functional blocks within a Monitoring Device
configuration and their linkage with Observation Points.

The selection of parameters in the configuration data model is based

on configuration issues discussed in the IPFIX and PSAMP documents
[RFC3917], [RFC5101], [RFC5470], [RFC5476], [RFC5474], and [RFC5475].
Furthermore, the structure and content of the IPFIX MIB module
[RFC6615] and the PSAMP MIB module [RFC6727] have been taken into
consideration. Consistency between the configuration data model and
the IPFIX and PSAMP MIB modules is an intended goal. Therefore,
parameters in the configuration data model are named according to
corresponding managed objects. Certain IPFIX MIB objects containing
state data have been adopted as state parameters in the configuration
data model. State parameters cannot be configured, yet their values

can be queried from the Monitoring Device by a network manager.

Section 3.2 explains how UML class diagrams are deployed to
illustrate the structure of the configuration data model.

Thereafter, Section 3.3 and Section 3.4 explain the class diagrams
for the configuration of Exporters and Collectors, respectively.
Each of the presented classes contains specific configuration
parameters that are specified in Section 4. Section 5 gives a short
introduction to YANG concepts that allow adapting the configuration
data model to the capabilities of a device. The formal definition of
the configuration data model in YANG is given in Section 6.
Section 7 illustrates the usage of the model with example
configurations in XML.

3.1. Metering Process Decomposition in Selection Process and Cache

In a Monitoring Device implementation, the functionality of the
Metering Process is commonly split into packet Sampling and Filtering
functions performed by Selection Processes, and the maintenance of
Flow Records and Packet Reports is performed by a Cache. Figure 1
illustrates this separation with the example of a basic Metering
Process.

Muenz, et al. Standards Track [Page 8]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

+ +
| Metering Process |
| +----mmmm-- + Selected |
Observed | | Selection | Packet +------- +| Stream of
Packet -->| Process |---------- >| Cache |--> Flow Records or
Stream | +----------- + Stream +------- + | Packet Reports
+ +

Figure 1: Selection Process and Cache forming a Metering Process

The configuration data model adopts the separation of Selection
Processes and Caches in order to support the flexible configuration
and combination of these functional blocks. As defined in [RFC5476],
the Selection Process takes an Observed Packet Stream as its input
and selects a subset of that stream as its output (Selected Packet
Stream). The action of the Selection Process on a single packet of

its input is defined by one Selector (called a Primitive Selector) or

an ordered composition of multiple Selectors (called a Composite
Selector). The Cache generates Flow Records or Packet Reports from
the Selected Packet Stream, depending on its configuration.

The configuration data model does not allow configuring a Metering
Process without any Selection Process in front of the Cache. If all
packets in the Observed Packet Stream shall be selected and passed to
the Cache without any Filtering or Sampling, a Selection Process

needs to be configured with a Selector that selects all packets
("SelectAll" class in Section 4.2.1).

The configuration data model enables the configuration of a Selection
Process that receives packets from multiple Observation Points as its
input. In this case, the Observed Packet Streams of the Observation
Points are processed in independent Selection Sequences. As
specified in [RFC5476], a distinct set of Selector instances needs to
be maintained per Selection Sequence in order to keep the Selection
States and statistics separate.

With the configuration data model, it is possible to configure a

Metering Process with more than one Selection Processes whose output
is processed by a single Cache. This is illustrated in Figure 2.

Muenz, et al. Standards Track [Page 9]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

+ +
| Metering Process |
| +----mmmmm-- + Selected |
Observed | | Selection | Packet |
Packet -->| Process | + + + |
Stream | +----------- + Stream +->| || Stream of
| .. | Cache |--> Flow Records or
| +---mmmmmme- + Selected +->| | | Packet Reports
Observed | | Selection | Packet | +------- + |
Packet -->| Process |---------- + |
Stream | +----------- + Stream |
+ +

Figure 2: Metering Process with multiple Selection Processes

The Observed Packet Streams at the input of a Metering Process may
originate from Observation Points belonging to different Observation
Domains. By definition of the Observation Domain (see [RFC5101]),
however, a Cache MUST NOT aggregate packets observed at different
Observation Domains in the same Flow. Hence, if the Cache is
configured to generate Flow Records, it needs to distinguish packets
according to their Observation Domains.

3.2. UML Representation

We use UML class diagrams [UML] to explain the structure of the
configuration data model. The attributes of the classes are the
configuration or state parameters. The configuration and state
parameters of a given Monitoring Device are represented as objects of
these classes encoded in XML.

+ +

| SctpExporter |

+ + 0.1+ +

| name |[<>--mm--- | TransportLayerSecurity |

| ipfixVersion = 10 | + +

| sourcelPAddress[0..*]

| destinationIPAddress[1..*] | 0.1+ +

| destinationPort = 4739|4740 |<>------- | TransportSession [
| ifName/ifindex[0..1] | + +

| sendBufferSize {opt.} |

| rateLimit[0..1] |
| timedReliability = 0 |
+ +

Figure 3: UML example: SctpExporter class

Muenz, et al. Standards Track [Page 10]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

As an example, Figure 3 shows the UML diagram of the SctpExporter
class, which is specified in more detail in Section 4.4.1. The upper
box contains the name of the class. The lower box lists the

attributes of the class. Each attribute corresponds to a parameter

of the configuration data model.

Behind an attribute’s name, there may appear a multiplicity indicator
in brackets (i.e., between "[" and "]"). An attribute with

multiplicity indicator "[0..1]" represents an OPTIONAL configuration
parameter that is only included in the configuration data if the user
configures it. Typically, the absence of an OPTIONAL parameter has a
specific meaning. For example, not configuring rateLimit in an
object of the SctpExporter class means that no rate limiting will be
applied to the exported data. In YANG, an OPTIONAL parameter is
specified as a "leaf" without "mandatory true" substatement. The
"description” substatement specifies the behavior for the case that
the parameter is not configured.

The multiplicity indicator "[0..*]" means that this parameter is

OPTIONAL and MAY be configured multiple times with different values.
In the example, multiple source IP addresses (sourcelPAddress) may be
configured for a multihomed Exporting Process. In YANG, an attribute
with multiplicity indicator "[0..*]" corresponds to a "leaf-list".

The multiplicity indicator "[1..*]" means that this parameter MUST be
configured at least once and MAY be configured multiple times with
different values. In the example, one or more destination IP

addresses (destinationlPAddress) must be configured to specify the
export destination. In YANG, an attribute with multiplicity

indicator "[1..*]" corresponds to a "leaf-list" with "min-elements 1"
substatement. Note that attributes without this multiplicity

indicator MUST NOT appear more than once in each object of the class.

Attributes without multiplicity indicator may be endued with a

default value that is indicated behind the equality symbol ("="). If

a default value exists, the parameter does not have to be explicitly
configured by the user. If the parameter is not configured by the
user, the Monitoring Device MUST use the specified default value for
the given parameter. In the example, IPFIX version 10 must be used
unless a different value is configured for ipfixVersion. In YANG, an
attribute with default value corresponds to a "leaf" with "default”
substatement.

In the example, there exist two default values for the destination
port (destinationPort) -- namely, the registered ports for IPFIX with
and without transport layer security (i.e., DTLS or TLS), which are
4740 and 4739, respectively. In the UML diagram, the two default
values are separated by a vertical bar (""). In YANG, such

Muenz, et al. Standards Track [Page 11]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

conditional default value alternatives cannot be specified formally.
Instead, they are defined in the "description" substatement of the
"leaf".

Further attribute properties are denoted in braces (i.e., between "{"

and "}"). An attribute with property "{opt.}", such as

sendBufferSize in the SctpExporter class, represents a parameter that
MAY be configured by the user. If not configured by the user, the
Monitoring Device MUST set an appropriate value for this parameter at
configuration time. As a result, the parameter will always exist in

the configuration data, yet it is not mandatory for the user to

configure it. This behavior can be implemented as a static device-
specific default value, but does not have to be. Therefore, the user
MUST NOT expect that the device always sets the same values for the
same parameter. Regardless of whether the parameter value has been
configured by the user or set by the device, the parameter value MUST
NOT be changed by the device after configuration. Since this

behavior cannot be specified formally in YANG, it is specified in the
"description" substatement of the "leaf".

The availability of a parameter may depend on another parameter
value. In the UML diagram, such restrictions are indicated as
attribute properties (e.g., "{SCTP only}"). The given example does
not show such restrictions. In YANG, the availability of a parameter
is formally restricted with the "when" substatement of the "leaf".

Another attribute property not shown in the example is "{readOnly}",
which specifies state parameters that cannot be configured. In YANG,
this corresponds to the "config false" substatement.

Attributes without multiplicity indicator, without default value, and
without "{readOnly}" property are mandatory configuration parameters.
These parameters MUST be configured by the user unless an attribute
property determines that the parameter is not available. In YANG, a
mandatory parameter corresponds to a "leaf" with "mandatory true”
substatement. In the example, the user MUST configure the name
parameter.

If some parameters are related to each other, it makes sense to group
these parameters in a subclass. This is especially useful if

different subclasses represent choices of different parameter sets,

or if the parameters of a subclass may appear multiple times. For
example, the SctpExporter class MAY contain the parameters of the
TransportLayerSecurity subclass.

An object of a class is encoded as an XML element. In order to

distinguish between classes and objects, class names start with an
uppercase character while the associated XML elements start with

Muenz, et al. Standards Track [Page 12]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

lowercase characters. Parameters appear as XML elements that are
nested in the XML element of the object. In XML, the parameters of

an object can appear in any order and do not have to follow the order

in the UML class diagram. Unless specified differently, the order in
which parameters appear does not have a meaning. As an example, an
object of the SctpExporter class corresponds to one occurrence of

<sctpExporter>
<name>my-sctp-export</name>

</sctpExporter>

There are various possibilities how objects of classes can be related
to each other. In the scope of this document, we use two different
types of relationship between objects: aggregation and unidirectional
association. In UML class diagrams, two different arrow types are
used as shown in Figure 4.

-t 0% -t -+ 0% 1 +---+
| Al | Bl | A > B
S — S — S — S —

(a) Aggregation (b) Unidirectional association
Figure 4: Class relationships in UML class diagrams

Aggregation means that one object is part of the other object. In
Figure 4 (a), an object of class B is part of an object of class A.
This corresponds to nested XML elements:

<a>
<pb>

<Ja>
In the example, objects of the TransportLayerSecurity class and the
TransportSession class appear as nested XML elements

<transportLayerSecurity> and <transportSession> within an object of
the SctpExporter class <sctpExporter>.

A unidirectional association is a reference to an object. In

Figure 4(b), an object of class A contains a reference to an object

of class B. This corresponds to separate XML elements that are not
nested. To distinguish different objects of class B, class B must

have a key. In the configuration data model, keys are string

parameters called "name"”, corresponding to XML elements <name>. The
names MUST be unique within the given XML subtree. The reference to

Muenz, et al. Standards Track [Page 13]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

a specific object of class B is encoded with an XML element ,
which contains the name of an object. If an object of class A refers
to the object of class B with name "foo", this looks as follows:

<a>
foo

<name>foo</name>

<Ib>
In Figure 4, the indicated numbers define the multiplicity:

"1": one only
"0..*": zero or more
"1..*": one or more

In the case of aggregation, the multiplicity indicates how many
objects of one class may be included in one object of the other
class. In Figure 4(a), an object of class A may contain an arbitrary
number of objects of class B. In the case of unidirectional
association, the multiplicity at the arrowhead specifies the number
of objects of a given class that may be referred to. The

multiplicity at the arrow tail specifies how many different objects

of one class may refer to a single object of the other class. In
Figure 4(b), an object of class A refers to single object of class B.
One object of class B can be referred to from an arbitrary number of
objects of class A.

Similar to classes that are referenced in UML associations, classes
that contain configuration parameters and that occur in an
aggregation relationship with multiplicity greater than one must have
a key. This key is necessary because every configuration parameter
must be addressable in order to manipulate or delete it. The key
values MUST be unique in the given XML subtree (i.e., unigue within
the aggregating object). Hence, if class B in Figure 4(a) contains a
configuration parameter, all objects of class B belonging to the same
object of class A must have different key values. Again, the key
appears as an attribute called "name" in the concerned classes.

A class that contains state parameters but no configuration
parameters, such as the Template class (see Section 4.8), does not
have a key. This is because state parameters cannot be manipulated
or deleted, and therefore do not need to be addressable.

Muenz, et al. Standards Track [Page 14]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

Note that the usage of keys as described above is required by YANG
[RFC6020], which mandates the existence of a key for elements that
appear in a list of configuration data.

The configuration data model for IPFIX and PSAMP makes use of
unidirectional associations to specify the data flow between
different functional blocks. For example, if the output of a
Selection Process is processed by a Cache, this corresponds to an
object of the SelectionProcess class that contains a reference to an
object of the Cache class. The configuration data model does not
mandate that such a reference exists for every functional block that
has an output. If such a reference is absent, the output is dropped
without any further processing. Although such configurations are
incomplete, we do not consider them invalid as they may temporarily
occur if a Monitoring Device is configured in multiple steps. Also,

it might be useful to pre-configure certain functions of a Monitoring
Device in order to be able to switch to a new configuration more
quickly.

3.3. Exporter Configuration

Figure 5 below shows the main classes of the configuration data model
that are involved in the configuration of an IPFIX or PSAMP Exporter.
The role of the classes can be briefly summarized as follows:

0 The ObservationPoint class specifies an Observation Point (i.e.,
an interface or linecard) of the Monitoring Device at which
packets are captured for traffic measurements. An object of the
ObservationPoint class may be associated with one or more objects
of the SelectionProcess class configuring Selection Processes that
process the observed packets in parallel. As long as an
ObservationPoint object is specified without any references to
SelectionProcess objects, the captured packets are not considered
by any Metering Process.

0 The SelectionProcess class contains the configuration and state
parameters of a Selection Process. The Selection Process may be
composed of a single Selector or a sequence of Selectors, defining
a Primitive or Composite Selector, respectively.

The Selection Process selects packets from one or more Observed
Packet Streams, each originating from a different Observation
Point. Therefore, a SelectionProcess object MAY be referred to
from one or more ObservationPoint objects.

Muenz, et al. Standards Track [Page 15]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

A Selection Process MAY pass the Selected Packet Stream to a
Cache. Therefore, the SelectionProcess class contains a reference
to an object of the Cache class. If a Selection Process is
configured without any reference to a Cache, the selected packets
are not accounted in any Packet Report or Flow Record.

0 The Cache class contains configuration and state parameters of a
Cache. A Cache may receive the output of one or more Selection
Processes and maintains corresponding Packet Reports or Flow
Records. Therefore, an object of the Cache class MAY be referred
to from multiple SelectionProcess objects.

Configuration parameters of the Cache class specify the size of
the Cache, the Cache Layout, and expiration parameters if
applicable. The Cache configuration also determines whether
Packet Reports or Flow Records are generated.

A Cache MAY pass its output to one or more Exporting Processes.
Therefore, the Cache class enables references to one or more
objects of the ExportingProcess class. If a Cache object does not
specify any reference to an ExportingProcess object, the Cache
output is dropped.

0 The ExportingProcess class contains configuration and state
parameters of an Exporting Process. It includes various
transport-protocol-specific parameters and the export
destinations. An object of the ExportingProcess class MAY be
referred to from multiple objects of the Cache class.

An Exporting Process MAY be configured as a File Writer according
to [RFC5655].

Muenz, et al. Standards Track [Page 16]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

S +
| ObservationPoint |
[+
0..%|
|
0.*V
S +
| SelectionProcess |
[+
0..%|
|
0.1V
S +
| Cache
[+
0..%|
|
0.*V
S +
| ExportingProcess |
[+

Figure 5: Class diagram of Exporter configuration
3.4. Collector Configuration

Figure 6 below shows the main classes of the configuration data model
that are involved in the configuration of a Collector. An object of

the CollectingProcess class specifies the local IP addresses,

transport protocols, and port numbers of a Collecting Process.
Alternatively, the Collecting Process MAY be configured as a File
Reader according to [RFC5655].

An object of the CollectingProcess class may refer to one or more
ExportingProcess objects configuring Exporting Processes that
reexport the received data. As an example, an Exporting Process can
be configured as a File Writer in order to save the received IPFIX
Messages in a file.

Muenz, et al. Standards Track [Page 17]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

N +
| CollectingProcess |
0..%|
|
0.*V
N +

| ExportingProcess |

Figure 6: Class diagram of Collector configuration
4. Configuration Parameters

This section specifies the configuration and state parameters of the
configuration data model separately for each class.

4.1. ObservationPoint Class

+ +
| ObservationPoint |

| name

| observationPointld {readOnly} |

| observationDomainld | 0.*

| ifName[0..*] [------mmm-- +

| ifindex[0..*] | [0..*

| entPhysicalName][O0..*] | \%

| entPhysicallndex[0..*] | - +

| direction = "both" | | SelectionProcess |
+ + + +

Figure 7: ObservationPoint class

Figure 7 shows the ObservationPoint class that specifies an
Observation Point of the Monitoring Device.

As defined in [RFC5101], an Observation Point can be any location
where packets are observed. A Monitoring Device potentially has more
than one such location. An instance of ObservationPoint class
defines which location is associated with a specific Observation

Point. For this purpose, interfaces and physical entities are

identified using their names. Alternatively, index values of the
corresponding entries in the ifTable (IF-MIB module [RFC2863]) or the
entPhysicalTable (ENTITY-MIB module [RFC4133]) can be used as
identifiers. However, indices SHOULD only be used as identifiers if
an SNMP agent on the same Monitoring Device enables access to the
corresponding MIB tables.

Muenz, et al. Standards Track [Page 18]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

By its definition in [RFC5101], an Observation Point may be
associated with a set of interfaces. Therefore, the configuration
data model allows configuring multiple interfaces and physical
entities for a single Observation Point.

The Observation Point ID (i.e., the value of the Information Element
observationPointld [IANA-IPFIX]) is assigned by the Monitoring
Device. It appears as a state parameter in the ObservationPoint
class.

The configuration parameters of the Observation Point are:

observationDomainld: This parameter defines the identifier of the
Observation Domain the Observation Point belongs to. Observation
Points that are configured with the same Observation Domain ID
belong to the same Observation Domain.
Note that this parameter corresponds to
ipfixObservationPointObservationDomainld in the IPFIX MIB module
[RFC6615].

ifName/ifindex/entPhysicalName/entPhysicallndex: These parameters
identify interfaces and physical entities (e.g., linecards) that
are on the Monitoring Device and are associated with the given
Observation Point.
An interface is either identified by its name (ifName) or the
ifindex value of the corresponding object in the IF-MIB module
[RFC2863]. ifindex SHOULD only be used if an SNMP agent enables
access to the ifTable.
Similarly, a physical entity is either identified by its name
(entPhysicalName) or the entPhysicallndex value of the
corresponding object in the ENTITY-MIB module [RFC4133].
entPhysicallndex SHOULD only be used if an SNMP agent enables
access to the entPhysicalTable.
Note that the parameters ifindex and entPhysicallndex correspond
to ipfixObservationPointPhysicallnterface and
ipfixObservationPointPhysicalEntity in the IPFIX MIB module
[RFC6615].

direction: This parameter specifies if ingress traffic, egress
traffic, or both ingress and egress traffic is captured, using the
values "ingress", "egress”, and "both", respectively. If not
configured, ingress and egress traffic is captured (i.e., the
default value is "both"). If not applicable (e.g., in the case of
a sniffing interface in promiscuous mode), the value of this

parameter is ignored.

Muenz, et al. Standards Track [Page 19]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

An ObservationPoint object MAY refer to one or more SelectionProcess
objects configuring Selection Processes that process the observed
packets in parallel.

4.2. SelectionProcess Class

R +
| SelectionProcess |

R R S Se— +

| name |[<>------ | Selector |

| | E R — +

I I

| | 0.*+ +

| |[<>------ | SelectionSequence |

| | + +

| | | observationDomainld {readOnly} |
| | | selectionSequenceld {readOnly} |
| | + +

I I

I I

I

Figure 8: SelectionProcess class

Figure 8 shows the SelectionProcess class. The SelectionProcess

class contains the configuration and state parameters of a Selection
Process that selects packets from one or more Observed Packet Streams
and generates a Selected Packet Stream as its output. A non-empty
ordered list defines a sequence of Selectors. The actions defined by

the Selectors are applied to the stream of incoming packets in the
specified order.

If the Selection Process receives packets from multiple Observation
Points, the Observed Packet Streams need to be processed
independently in separate Selection Sequences. Each Selection
Sequence is identified by a Selection Sequence ID that is unique
within the Observation Domain the Observation Point belongs to (see
[RFC5477]). Selection Sequence IDs are assigned by the Monitoring
Device. As state parameters, the SelectionProcess class contains a
list of (observationDomainld, selectionSequenceld) tuples specifying
the assigned Selection Sequence IDs and corresponding Observation
Domain IDs. With this information, it is possible to associate
Selection Sequence (Statistics) Report Interpretations exported
according to the PSAMP protocol specification [RFC5476] with the
corresponding object of the SelectionProcess class.

Muenz, et al. Standards Track [Page 20]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

A SelectionProcess object MAY include a reference to an object of the
Cache class to generate Packet Reports or Flow Records from the
Selected Packet Stream.

4.2.1. Selector Class

+ +

| Selector |

+ + T —— +

| name |<>------ + SelectAll/l |

| packetsObserved {readOnly} | | SampCountBased/ |

| packetsDropped {readOnly} | | SampTimeBased/ |

| selectorDiscontinuityTime {readOnly} | | SampRandOutOfN/ |

	SampUniProb/
	FilterMatch/
	FilterHash/

+ + +

+——

Figure 9: Selector class

The Selector class in Figure 9 contains the configuration and state
parameters of a Selector. Standardized PSAMP Sampling and Filtering
methods are described in [RFC5475]; their configuration parameters
are specified in the classes SampCountBased, SampTimeBased,
SampRandOutOfN, SampUniProb, FilterMatch, and FilterHash. In
addition, the SelectAll class, which has no parameters, is used for a
Selector that selects all packets. The Selector class includes

exactly one of these sampler and filter classes, depending on the
applied method.

As state parameters, the Selector class contains the Selector
statistics packetsObserved and packetsDropped as well as
selectorDiscontinuityTime, which correspond to the IPFIX MIB module
objects ipfixSelectionProcessStatsPacketsObserved,
ipfixSelectionProcessStatsPacketsDropped, and
ipfixSelectionProcessStatsDiscontinuityTime, respectively [RFC6615]:

packetsObserved: The total number of packets observed at the input
of the Selector. If this is the first Selector in the Selection
Process, this counter corresponds to the total number of packets
in all Observed Packet Streams at the input of the Selection
Process. Otherwise, the counter corresponds to the total number
of packets at the output of the preceding Selector.
Discontinuities in the value of this counter can occur at
re-initialization of the management system, and at other times as
indicated by the value of selectorDiscontinuityTime.

Muenz, et al. Standards Track [Page 21]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

packetsDropped: The total number of packets discarded by the
Selector. Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at other times
as indicated by the value of selectorDiscontinuityTime.

selectorDiscontinuityTime: Timestamp of the most recent occasion at
which one or more of the Selector counters suffered a
discontinuity. In contrast to
ipfixSelectionProcessStatsDiscontinuityTime, the time is absolute
and not relative to sysUpTime.

Note that packetsObserved and packetsDropped are aggregate statistics
calculated over all Selection Sequences of the Selection Process.

This is in contrast to the counter values in the Selection Sequence
Statistics Report Interpretation [RFC5476], which are related to a

single Selection Sequence only.

4.2.2. Sampler Classes

+ + + + + +
| SampCountBased | | SampTimeBased | | SampRandOutOfN |
+ + + + + +

| packetinterval | | timelnterval | | population |
| packetSpace | |timeSpace | |size |
+ + + + + +

| SampUniProb |

Figure 10: Sampler classes

The Sampler classes in Figure 10 contain the configuration parameters
of specific Sampling algorithms:

packetinterval, packetSpace: For systematic count-based Sampling,
packetinterval defines the number of packets that are
consecutively sampled between gaps of length packetSpace. These
parameters correspond to the Information Elements
samplingPacketInterval and samplingPacketSpace [RFC5477], as well
as to the PSAMP MIB objects psampSampCountBasedIinterval and
psampSampCountBasedSpace [RFC6727].

Muenz, et al. Standards Track [Page 22]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

timelnterval, timeSpace: For systematic time-based Sampling,
timelnterval defines the time interval during which all arriving
packets are sampled. timeSpace is the gap between two Sampling
intervals. These parameters correspond to the Information
Elements samplingTimelnterval and samplingTimeSpace [RFC5477], as
well as to the PSAMP MIB objects psampSampTimeBasedInterval and
psampSampTimeBasedSpace [RFC6727]. The unit is microseconds.

size, population: For n-out-of-N random Sampling, size defines the
number of elements taken from the parent population. population
defines the number of elements in the parent population. These
parameters correspond to the Information Elements samplingSize and
samplingPopulation [RFC5477], as well as to the PSAMP MIB objects
psampSampRandOutOfNSize and psampSampRandOutOfNPopulation
[RFC6727].

probability: For uniform probabilistic Sampling, probability defines
the Sampling probability. The probability is expressed as a value
between 0 and 1. This parameter corresponds to the Information
Element samplingProbability [RFC5477], as well as to the PSAMP MIB
object psampSampUniProbProbability [RFC6727].

4.2.3. Filter Classes

+ +

| FilterMatch |

+ +

| ield/ieName

| ieEnterpriseNumber =0 |

| value |

+ +

+ +

| FilterHash |

+ + 1K A +

| hashFunction = "BOB" |<>------- | SelectedRange |
| initializerValue[0..1] | oo +

| ipPayloadOffset = 0 | | name |

| ipPayloadSize = 8 [| min |

| digestOutput = "false" | | max |

| outputRangeMin {readOnly} | e +
| outputRangeMax {readOnly} |

+ +

Figure 11: Filter classes

Muenz, et al. Standards Track [Page 23]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

The Filter classes in Figure 11 contain the configuration parameters
of specific Filtering methods. For property match Filtering, the
configuration parameters are:

ield, ieName, ieEnterpriseNumber: The property to be matched is
specified by either ield or ieName, specifying the identifier or
name of the Information Element, respectively. If
ieEnterpriseNumber is zero (which is the default), this
Information Element is registered in the IANA registry of IPFIX
Information Elements [IANA-IPFIX]. A non-zero value of
ieEnterpriseNumber specifies an enterprise-specific Information
Element [IANA-ENTERPRISE-NUMBERS].

value: Matching value.
For hash-based Filtering, the configuration and state parameters are:

hashFunction: Hash function to be used. The following parameter
values are defined by the configuration data model:
* BOB: BOB Hash Function as specified in [RFC5475], Appendix A.2
* |PSX: IP Shift-XOR (IPSX) Hash Function as specified in

[RFC5475], Appendix A.1

* CRC: CRC-32 function as specified in [RFC1141]
Default value is "BOB". This parameter corresponds to the PSAMP
MIB object psampFiltHashFunction [RFC6727].

initializerValue: Initializer value to the hash function. This
parameter corresponds to the Information Element
hashlnitialiserValue [RFC5477], as well as to the PSAMP MIB object
psampkFiltHashlInitializerValue [RFC6727]. If not configured by the
user, the Monitoring Device arbitrarily chooses an initializer
value.

ipPayloadOffset, ipPayloadSize: ipPayloadOffset and ipPayloadSize
configure the offset and the size of the payload section used as
input to the hash function. Default values are 0 and 8,
respectively, corresponding to the minimum configurable values
according to [RFC5476], Section 6.5.2.6. These parameters
correspond to the Information Elements hashiPPayloadOffset and
hashlPPayloadSize [RFC5477], as well as to the PSAMP MIB objects
psampFiltHashlpPayloadOffset and psampFiltHashipPayloadSize
[RFC6727].

digestOutput: digestOutput enables or disables the inclusion of the
packet digest in the resulting PSAMP Packet Report. This requires
that the Cache Layout of the Cache generating the Packet Reports
includes a digestHashValue field. This parameter corresponds to
the Information Element hashDigestOutput [RFC5477].

Muenz, et al. Standards Track [Page 24]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

outputRangeMin, outputRangeMax: The values of these two state
parameters are the beginning and end of the hash function’s
potential output range. These parameters correspond to the
Information Elements hashOutputRangeMin and hashOutputRangeMax
[RFC5477], as well as to the PSAMP MIB objects
psampFiltHashOutputRangeMin and psampFiltHashOutputRangeMax
[RFC6727].

One or more ranges of matching hash values are defined by the min and
max parameters of the SelectedRange subclass. These parameters
correspond to the Information Elements hashSelectedRangeMin and
hashSelectedRangeMax [RFC5477], as well as to the PSAMP MIB objects
psampFiltHashSelectedRangeMin and psampFiltHashSelectedRangeMax
[RFC6727].

4.3. Cache Class

+ +
| Cache |

+ + e R ——— +

| name [<>-------- | immediateCache/ |

| meteringProcessld {readOnly} | | timeoutCache/ |

| dataRecords {readOnly} | | naturalCache/ |

| cacheDiscontinuity Time {readOnly} | | permanentCache |
| | S —— +

I I

| I O +

| [--------- >| ExportingProcess

+ + R +

Figure 12: Cache class

Figure 12 shows the Cache class that contains the configuration and

state parameters of a Cache. Most of these parameters are specific

to the type of the Cache and therefore contained in the subclasses
immediateCache, timeoutCache, naturalCache, and permanentCache, which
are presented below in Sections 4.3.1 and 4.3.2. The following three

state parameters are common to all Caches and therefore included in

the Cache class itself:

meteringProcessld: The identifier of the Metering Process the Cache
belongs to.
This parameter corresponds to the Information Element
meteringProcessld [IANA-IPFIX]. Its occurrence helps to associate
Metering Process (Reliability) Statistics exported according to
the IPFIX protocol specification [RFC5101] with the corresponding
object of the MeteringProcess class.

Muenz, et al. Standards Track [Page 25]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

dataRecords: The number of Data Records generated by this Cache.
Discontinuities in the value of this counter can occur at
re-initialization of the management system, and at other times as
indicated by the value of cacheDiscontinuityTime.
Note that this parameter corresponds to
ipfixMeteringProcessDataRecords in the IPFIX MIB module [RFC6615].

cacheDiscontinuityTime: Timestamp of the most recent occasion at
which dataRecords suffered a discontinuity. In contrast to
ipfixMeteringProcessDiscontinuityTime, the time is absolute and
not relative to sysUpTime.
Note that this parameter functionally corresponds to
ipfixMeteringProcessDiscontinuityTime in the IPFIX MIB module
[RFC6615].

A Cache object MAY refer to one or more ExportingProcess objects
configuring different Exporting Processes.

4.3.1. ImmediateCache Class

+
| ImmediateCache |
+ + R e +
| [<>------- | CachelLayout |
+ + ommmmmmemeeen +

Figure 13: ImmediateCache class

The ImmediateCache class depicted in Figure 13 is used to configure a
Cache that generates a PSAMP Packet Report for each packet at its
input. The fields contained in the generated Data Records are

defined in an object of the CachelLayout class, which is defined below
in Section 4.3.3.

Muenz, et al. Standards Track [Page 26]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

4.3.2. TimeoutCache, NaturalCache, and PermanentCache Class

+ +

| TimeoutCache |

+ + I +

| maxFlows {opt.} |[<>------- | CachelLayout |
| activeTimeout {opt.} | e +

| idleTimeout {opt.} |

| activeFlows {readOnly} |
| unusedCacheEntries {readOnly} |

+ +

+ +

| NaturalCache |

+ + [S +

| maxFlows {opt.} [<>------- | CachelLayout |
| activeTimeout {opt.} | e +

| idleTimeout {opt.} |

| activeFlows {readOnly} |
| unusedCacheEntries {readOnly} |

+ +

+ +

| PermanentCache [

+ + g RE—— +

| maxFlows {opt.} |[<>------- | CachelLayout |
| exportinterval {opt.} | o +

| activeFlows {readOnly} |
| unusedCacheEntries {readOnly} |
+ +

Figure 14: TimeoutCache, NaturalCache, and PermanentCache class

Figure 14 shows the TimeoutCache class, the NaturalCache class, and
the PermanentCache class. These classes are used to configure a
Cache that aggregates the packets at its input and generates IPFIX
Flow Records. The three classes differ in when Flows expire:

o TimeoutCache: Flows expire after active or idle timeout.

o NaturalCache: Flows expire after active or idle timeout, or on
natural termination (e.g., TCP FIN or TCP RST) of the Flow.

o PermanentCache: Flows never expire, but are periodically exported
with the interval set by exportinterval.

Muenz, et al. Standards Track [Page 27]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

The following configuration and state parameters are common to the
three classes:

maxFlows: This parameter configures the maximum number of entries in
the Cache, which is the maximum number of Flows that can be
measured simultaneously.
If this parameter is configured, the Monitoring Device MUST ensure
that sufficient resources are available to store the configured
maximum number of Flows. If the maximum number of Cache entries
is in use, no additional Flows can be measured. However, traffic
that pertains to existing Flows can continue to be measured.

activeFlows: This state parameter indicates the number of Flows
currently active in this Cache (i.e., the number of Cache entries
currently in use).
Note that this parameter corresponds to
ipfixMeteringProcessCacheActiveFlows in the IPFIX MIB module
[RFC6615].

unusedCacheEntries: The number of unused cache entries. Note that
the sum of activeFlows and unusedCacheEntries equals maxFlows if
maxFlows is configured.
Note that this parameter corresponds to
ipfixMeteringProcessCacheUnusedCacheEntries in the IPFIX MIB
module [RFC6615].

The following timeout parameters are only available in the
TimeoutCache class and the NaturalCache class:

activeTimeout: This parameter configures the time in seconds after
which a Flow is expired even though packets matching this Flow are
still received by the Cache. The parameter value zero indicates
infinity, meaning that there is no active timeout.
If not configured by the user, the Monitoring Device sets this
parameter.
Note that this parameter corresponds to
ipfixMeteringProcessCacheActiveTimeout in the IPFIX MIB module
[RFC6615].

idleTimeout: This parameter configures the time in seconds after
which a Flow is expired if no more packets matching this Flow are
received by the Cache. The parameter value zero indicates
infinity, meaning that there is no idle timeout.
If not configured by the user, the Monitoring Device sets this
parameter.
Note that this parameter corresponds to
ipfixMeteringProcessCacheldleTimeout in the IPFIX MIB module
[RFC6615].

Muenz, et al. Standards Track [Page 28]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

The following interval parameter is only available in the
PermanentCache class:

exportinterval: This parameter configures the interval (in seconds)
for periodical export of Flow Records.
If not configured by the user, the Monitoring Device sets this
parameter.

Every generated Flow Record MUST be associated with a single
Observation Domain. Hence, although a Cache MAY be configured to
process packets observed at multiple Observation Domains, the Cache
MUST NOT aggregate packets observed at different Observation Domains
in the same Flow.

An object of the Cache class contains an object of the CachelLayout
class that defines which fields are included in the Flow Records.

4.3.3. CachelLayout Class

S RRR— +
| CachelLayout |

+ + 1.5+ +

| [<>------ | CacheField [

| [+ +

I | |name |

| | | ield/ieName |

| | | ieLength {opt.} |

| | | ieEnterpriseNumber = 0 |

| | | isFlowKey[0..1] {not used with |
| [| ImmediateCache class} [
+ + + +

Figure 15: CacheLayout class

A Cache generates and maintains Packet Reports or Flow Records
containing information that has been extracted from the incoming
stream of packets. Using the CacheField class, the CachelLayout class
specifies the superset of fields that are included in the Packet

Reports or Flow Records (see Figure 15).

If Packet Reports are generated (i.e., if InmediateCache class is
used to configure the Cache), every field specified by the Cache
Layout MUST be included in the resulting Packet Report unless the
corresponding Information Element is not applicable or cannot be
derived from the content or treatment of the incoming packet. Any
other field specified by the Cache Layout MAY only be included in the

Muenz, et al. Standards Track [Page 29]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

Packet Report if it is obvious from the field value itself or from
the values of other fields in same Packet Report that the field value
was not determined from the packet.

For example, if a field is configured to contain the TCP source port
(Information Element tcpSourcePort [IANA-IPFIX]), the field MUST be
included in all Packet Reports that are related to TCP packets.
Although the field value cannot be determined for non-TCP packets,
the field MAY be included in the Packet Reports if another field
contains the transport protocol identifier (Information Element
protocolldentifier [IANA-IPFIX]).

If Flow Records are generated (i.e., if TimeoutCache, NaturalCache,
or PermanentCache class is used to configure the Cache), the Cache
Layout differentiates between Flow Key fields and non-key fields.
Every Flow Key field specified by the Cache Layout MUST be included
as Flow Key in the resulting Flow Record unless the corresponding
Information Element is not applicable or cannot be derived from the
content or treatment of the incoming packet. Any other Flow Key
field specified by the Cache Layout MAY only be included in the Flow
Record if it is obvious from the field value itself or from the

values of other Flow Key fields in the same Flow Record that the

field value was not determined from the packet. Two packets are
accounted by the same Flow Record if none of their Flow Key fields
differ. If a Flow Key field can be determined for one packet but not
for the other, the two packets are accounted in different Flow
Records.

Every non-key field specified by the Cache Layout MUST be included in
the resulting Flow Record unless the corresponding Information
Element is not applicable or cannot be derived for the given Flow.

Any other non-key field specified by the Cache Layout MAY only be
included in the Flow Record if it is obvious from the field value

itself or from the values of other fields in same Flow Record that

the field value was not determined from the packet. Packets which

are accounted by the same Flow Record may differ in their non-key
fields, or one or more of the non-key fields can be undetermined for

all or some of the packets.

For example, if a non-key field specifies an Information Element
whose value is determined by the first packet observed within a Flow
(which is the default rule according to [RFC5102] unless specified
differently in the description of the Information Element), this

field MUST be included in the resulting Flow Record if it can be
determined from the first packet of the Flow.

Muenz, et al. Standards Track [Page 30]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

The CachelLayout class does not have any parameters. The
configuration parameters of the CacheField class are as follows:

ield, ieName, ieEnterpriseNumber: These parameters specify a field
by the combination of the Information Element identifier or name,
and the Information Element enterprise number. Either ield or
ieName MUST be specified. If ieEnterpriseNumber is zero (which is
the default), this Information Element is registered in the IANA
registry of IPFIX Information Elements [IANA-IPFIX]. A non-zero
value of ieEnterpriseNumber specifies an enterprise-specific
Information Element [IANA-ENTERPRISE-NUMBERS].
If the enterprise number is set to 29305, this field contains a
Reverse Information Element. In this case, the Cache MUST
generate Data Records in accordance to [RFC5103].

ieLength: This parameter specifies the length of the field in
octets. A value of 65535 means that the field is encoded as a
variable-length Information Element. For Information Elements of
integer and float type, the field length MAY be set to a smaller
value than the standard length of the abstract data type if the
rules of reduced size encoding are fulfilled (see [RFC5101],
Section 6.2). If not configured by the user, the field length is
set by the Monitoring Device.

isFlowKey: If present, this field is a Flow Key. If the field
contains a Reverse Information Element, it MUST NOT be configured
as Flow Key.
This parameter is not available if the Cache is configured using
the ImmediateCache class since there is no distinction between
Flow Key fields and non-key fields in Packet Reports.

Note that the use of Information Elements can be restricted to
certain Cache types as well as to Flow Key or non-key fields. Such
restrictions may result from Information Element definitions or from
device-specific constraints. According to Section 5, the Monitoring
Device MUST notify the user if a Cache field cannot be configured
with the given Information Element.

Muenz, et al. Standards Track [Page 31]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

4.4, ExportingProcess Class

+ +

| ExportingProcess |

+ + 1.5+ +

| name |<>------ | Destination |

| exportingProcessld {readOnly} | R +
| exportMode = "parallel" | | name |<>-+
| | oo + |1

| | I

| | [R —— +

| | | SctpExporter/ |

| | | UdpExporter/ |

| | | TcpExporter/ |

| | | FileWriter |

| | [R —— +

| |

| O +

| |[<>------ | Options |

+ + + +

Figure 16: ExportingProcess class

The ExportingProcess class in Figure 16 specifies destinations to

which the incoming Packet Reports and Flow Records are exported using
objects of the Destination class. The Destination class includes one
object of the SctpExporter, UdpExporter, TcpExporter, or FileWriter

class which contains further configuration parameters. These classes
are described in Sections 4.4.1, 4.4.2, 4.4.3, and 4.4.4.

As state parameter, the ExportingProcess class contains the

identifier of the Exporting Process (exportingProcessld). This
parameter corresponds to the Information Element exportingProcessld
[IANA-IPFIX]. Its occurrence helps to associate Exporting Process
Reliability Statistics exported according to the IPFIX protocol
specification [RFC5101] with the corresponding object of the
ExportingProcess class.

The order in which objects of the Destination class appear is defined
by the user. However, the order has a specific meaning only if the
exportMode parameter is set to "fallback”. The exportMode parameter
is defined as follows:

exportMode: This parameter determines to which configured
destination(s) the incoming Data Records are exported. The
following parameter values are specified by the configuration data
model:

Muenz, et al. Standards Track [Page 32]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

* parallel: every Data Record is exported to all configured
destinations in parallel

* loadBalancing: every Data Record is exported to exactly one
configured destination according to a device-specific load-
balancing policy

* fallback: every Data Record is exported to exactly one
configured destination according to the fallback policy
described below

If exportMode is set to "fallback”, the first object of the

Destination class defines the primary destination, the second

object of the Destination class defines the secondary destination,

and so on. If the Exporting Process fails to export Data Records

to the primary destination, it tries to export them to the

secondary one. If the secondary destination fails as well, it

continues with the tertiary, etc.

"parallel" is the default value if exportMode is not configured.

Note that the exportMode parameter is related to the
ipfixExportMemberType object in [RFC6615]. If exportMode is
"parallel”, the ipfixExportMemberType values of the corresponding
entries in ipfixExportTable are set to parallel(3). If exportMode is
"loadBalancing”, the ipfixExportMemberType values of the
corresponding entries in ipfixExportTable are set to
loadBalancing(4). If exportMode is "fallback", the
ipfixExportMemberType value that refers to the primary destination is
set to primary(1); the ipfixExportMemberType values that refer to the
remaining destinations need to be set to secondary(2). The IPFIX MIB
module does not define any value for tertiary destination, etc.

The reporting of information with Options Templates is defined with
objects of the Options class.

The Exporting Process may modify the Packet Reports and Flow Records
to enable a more efficient transmission or storage under the

condition that no information is changed or suppressed. For example,
the Exporting Process may shorten the length of a field according to

the rules of reduced size encoding [RFC5101]. The Exporting Process
may also export certain fields in a separate Data Record as described

in [RFC5476].

Muenz, et al. Standards Track [Page 33]

RFC 6728 IPFIX/PSAMP Configuration Data Model =~ October 2012

4.4.1. SctpExporter Class

+ +
| SctpExporter |

+ + 0.1+ +

| ipfixVersion = 10 [<>------- | TransportLayerSecurity |
| sourcelPAddress[0..*] | + +

| destinationIlPAddress[1..*] |

| destinationPort = 4739|4740 | 0..1 + +
| ifName/ifindex[0..1] |[<>------- | TransportSession

| sendBufferSize {opt.} | + +

| rateLimit[0..1] |
| timedReliability = 0 |
+ +

Figure 17: SctpExporter class

The SctpExporter class shown in Figure 17 contains the configuration
parameters of an SCTP export destination. The configuration
parameters are:

ipfixVersion: Version number of the IPFIX protocol used. If
omitted, the default value is 10 (=0x000a) as specified in
[RFC5101].

sourcelPAddress: List of source IP addresses used by the Exporting