Stream: Internet Engineering Task Force (IETF)

RFC: 9174

Category: Standards Track

Published: January 2022

ISSN: 2070-1721

Authors: B. Sipos M. Demmer J. Ott S. Perreault
RKF Engineering Technical University of Munich ~ LogMeln

RFC 9174
Delay-Tolerant Networking TCP Convergence-Layer
Protocol Version 4

Abstract

This document describes a TCP convergence layer (TCPCL) for Delay-Tolerant Networking (DTN).
This version of the TCPCL protocol resolves implementation issues in the earlier TCPCL version 3
as defined in RFC 7242 and provides updates to the Bundle Protocol (BP) contents, encodings, and
convergence-layer requirements in BP version 7 (BPv7). Specifically, TCPCLv4 uses BPv7 bundles
encoded by the Concise Binary Object Representation (CBOR) as its service data unit being
transported and provides a reliable transport of such bundles. This TCPCL version also includes
security and extensibility mechanisms.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9174.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Sipos, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9174
https://www.rfc-editor.org/info/rfc9174
https://trustee.ietf.org/license-info

RFC9174 DTN TCPCLv4 January 2022

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Scope

2. Requirements Language

2.1. Definitions Specific to the TCPCL Protocol

3. General Protocol Description
3.1. Convergence-Layer Services
3.2. TCPCL Session Overview
3.3. TCPCL States and Transitions
3.4. PKIX Environments and CA Policy
3.5. Session-Keeping Policies
3.6. Transfer Segmentation Policies

3.7. Example Message Exchange

4. Session Establishment
4.1. TCP Connection
4.2. Contact Header
4.3. Contact Validation and Negotiation
4.4. Session Security
4.4.1. Entity Identification
4.4.2. Certificate Profile for the TCPCL
4.4.3. TLS Handshake
444. TLS Authentication
445. Policy Recommendations

4.4.6. Example TLS Initiation

4.5. Message Header
4.6. Session Initialization Message (SESS_INIT)

4.7. Session Parameter Negotiation

Sipos, et al. Standards Track

Page 2

RFC9174 DTN TCPCLv4 January 2022

4.8. Session Extension Items

5. Established Session Operation
5.1. Upkeep and Status Messages
5.1.1. Session Upkeep (KEEPALIVE)
5.1.2. Message Rejection (MSG_REJECT)

5.2. Bundle Transfer
5.2.1. Bundle Transfer ID
5.2.2. Data Transmission (XFER_SEGMENT)
5.2.3. Data Acknowledgments (XFER_ACK)
5.2.4. Transfer Refusal (XFER_REFUSE)

5.2.5. Transfer Extension Items

6. Session Termination
6.1. Session Termination Message (SESS_TERM)

6.2. Idle Session Termination

7. Security Considerations
7.1. Threat: Passive Leak of Node Data
7.2. Threat: Passive Leak of Bundle Data
7.3. Threat: TCPCL Version Downgrade
7.4. Threat: Transport Security Stripping
7.5. Threat: Weak TLS Configurations
7.6. Threat: Untrusted End-Entity Certificate
7.7. Threat: Certificate Validation Vulnerabilities
7.8. Threat: Symmetric Key Limits
7.9. Threat: BP Node Impersonation
7.10. Threat: Denial of Service
7.11. Mandatory-to-Implement TLS
7.12. Alternate Uses of TLS
7.12.1. TLS without Authentication
7.12.2. Non-certificate TLS Use

7.13. Predictability of Transfer IDs

Sipos, et al. Standards Track Page 3

RFC9174 DTN TCPCLv4 January 2022

8. IANA Considerations
8.1. Port Number
8.2. Protocol Versions
8.3. Session Extension Types
8.4. Transfer Extension Types
8.5. Message Types
8.6. XFER_REFUSE Reason Codes
8.7. SESS_TERM Reason Codes
8.8. MSG_REJECT Reason Codes
8.9. Object Identifier for PKIX Module Identifier
8.10. Object Identifier for PKIX Other Name Forms
8.11. Object Identifier for PKIX Extended Key Usage

9. References
9.1. Normative References

9.2. Informative References

Appendix A. Significant Changes from RFC 7242
Appendix B. ASN.1 Module

Appendix C. Example of the BundleEID Other Name Form
Acknowledgments

Authors' Addresses

1. Introduction

This document describes the TCP convergence-layer protocol for Delay-Tolerant Networking
(DTN). DTN is an end-to-end architecture providing communications in and/or through highly
stressed environments, including those with intermittent connectivity,long and/or variable
delays, and high bit error rates. More detailed descriptions of the rationale and capabilities of
these networks can be found in "Delay-Tolerant Networking Architecture" [RFC4838].

An important goal of the DTN architecture is to accommodate a wide range of networking
technologies and environments. The protocol used for DTN communications is the Bundle
Protocol version 7 (BPv7) [RFC9171], an application-layer protocol that is used to construct a
store-and-forward overlay network. BPv7 requires the services of a "convergence-layer adapter”

Sipos, et al. Standards Track Page 4

RFC9174 DTN TCPCLv4 January 2022

(CLA) to send and receive bundles using the service of some "native" link, network, or Internet
protocol. This document describes one such convergence-layer adapter that uses the well-known
Transmission Control Protocol (TCP). This convergence layer is referred to as TCP Convergence
Layer version 4 (TCPCLv4). For the remainder of this document,

« the abbreviation "BP" without the version suffix refers to BPv7.
« the abbreviation "TCPCL" without the version suffix refers to TCPCLv4.

The locations of the TCPCL and the Bundle Protocol in the Internet model protocol stack
(described in [RFC1122]) are shown in Figure 1. In particular, when BP is using TCP as its bearer
with the TCPCL as its convergence layer, both BP and the TCPCL reside at the application layer of
the Internet model.

T +
| DTN Application [-\
FoocsmssmEsaesassEeossaas |

| Bundle Protocol (BP) | -> Application Layer
e + |

| TCP Conv. Layer (TCPCL) | |
T + |

| TLS (optional) | -/
T +

| TCP | ---> Transport Layer
e +

| IPv4/IPv6 | ---> Network Layer
o +

| Link-Layer Protocol | ---> Link Layer

o +

Figure 1: The Locations of the Bundle Protocol and the TCP Convergence-Layer Protocol above the
Internet Protocol Stack

1.1. Scope

This document describes the format of the protocol data units passed between entities
participating in TCPCL communications. This document does not address:

» The format of protocol data units of the Bundle Protocol, as those are defined elsewhere in
[RFC9171]. This includes the concept of bundle fragmentation or bundle encapsulation. The
TCPCL transfers bundles as opaque data blocks.

* Mechanisms for locating or identifying other bundle entities (peers) within a network or
across an internet. The mapping of a node ID to a potential convergence layer (CL) protocol
and network address is left to implementation and configuration of the BP Agent (BPA) and
its various potential routing strategies, as is the mapping of a DNS name and/or address to a
choice of an end-entity certificate to authenticate a node to its peers.

* Logic for routing bundles along a path toward a bundle's endpoint. This CL protocol is
involved only in transporting bundles between adjacent entities in a routing sequence.

* Policies or mechanisms for issuing Public Key Infrastructure Using X.509 (PKIX) certificates;
provisioning, deploying, or accessing certificates and private keys; deploying or accessing

Sipos, et al. Standards Track Page 5

RFC9174 DTN TCPCLv4 January 2022

certificate revocation lists (CRLs); or configuring security parameters on an individual entity
or across a network.

» Uses of TLS that are not based on PKIX certificate authentication (see Section 7.12.2) or in
which authentication of both entities is not possible (see Section 7.12.1).

Any TCPCL implementation requires a BPA to perform those above-listed functions in order to
perform end-to-end bundle delivery.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

2.1. Definitions Specific to the TCPCL Protocol

This section contains definitions specific to the TCPCL protocol.

Network Byte Order: Here, "network byte order” means most significant byte first, a.k.a. big
endian. All of the integer encodings in this protocol SHALL be transmitted in network byte
order.

TCPCL Entity: This is the notional TCPCL application that initiates TCPCL sessions. This design,
implementation, configuration, and specific behavior of such an entity is outside of the scope
of this document. However, the concept of an entity has utility within the scope of this
document as the container and initiator of TCPCL sessions. The relationship between a TCPCL
entity and TCPCL sessions is defined as follows:

* ATCPCL entity MAY actively initiate any number of TCPCL sessions and should do so
whenever the entity is the initial transmitter of information to another entity in the
network.

* A TCPCL entity MAY support zero or more passive listening elements that listen for
connection requests from other TCPCL entities operating on other entities in the network.

* A TCPCL entity MAY passively initiate any number of TCPCL sessions from requests
received by its passive listening element(s) if the entity uses such elements.

These relationships are illustrated in Figure 2. For most TCPCL behavior within a session, the
two entities are symmetric and there is no protocol distinction between them. Some specific
behavior, particularly during session establishment, distinguishes between the active entity
and the passive entity. For the remainder of this document, the term "entity" without the prefix
"TCPCL" refers to a TCPCL entity.

TCP Connection: The term "connection"in this specification exclusively refers to a TCP
connection and any and all behaviors, sessions, and other states associated with that TCP
connection.

Sipos, et al. Standards Track Page 6

RFC9174 DTN TCPCLv4 January 2022

TCPCL Session: A TCPCL session (as opposed to a TCP connection) is a TCPCL communication
relationship between two TCPCL entities. A TCPCL session operates within a single underlying
TCP connection, and the lifetime of a TCPCL session is bound to the lifetime of that TCP
connection. A TCPCL session is terminated when the TCP connection ends, due to either (1) one
or both entities actively closing the TCP connection or (2) network errors causing a failure of
the TCP connection. Within a single TCPCL session, there are two possible transfer streams:
one in each direction, with one stream from each entity being the outbound stream and the
other being the inbound stream (see Figure 3). From the perspective of a TCPCL session, the
two transfer streams do not logically interact with each other. The streams do operate over
the same TCP connection and between the same BPAs, so there are logical relationships at
those layers (message and bundle interleaving, respectively). For the remainder of this
document, the term "session" without the prefix "TCPCL" refers to a TCPCL session.

Session Parameters: These are a set of values used to affect the operation of the TCPCL for a
given session. The manner in which these parameters are conveyed to the bundle entity and
thereby to the TCPCL is implementation dependent. However, the mechanism by which two
entities exchange and negotiate the values to be used for a given session is described in
Section 4.3.

Transfer Stream: A transfer stream is a unidirectional user-data path within a TCPCL session.
Transfers sent over a transfer stream are serialized, meaning that one transfer must complete
its transmission prior to another transfer being started over the same transfer stream. At the
stream layer, there is no logical relationship between transfers in that stream; it's only within
the BPA that transfers are fully decoded as bundles. Each unidirectional stream has a single
sender entity and a single receiver entity.

Transfer: This refers to the procedures and mechanisms for conveyance of an individual bundle
from one node to another. Each transfer within the TCPCL is identified by a Transfer ID
number, which is guaranteed to be unique only to a single direction within a single session.

Transfer Segment: A transfer segment is a subset of a transfer of user data being communicated
over a transfer stream.

Idle Session: A TCPCL session is idle while there is no transmission in progress in either direction.
While idle, the only messages being transmitted or received are KEEPALIVE messages.

Live Session: A TCPCL session is live while there is a transmission in progress in either direction.

Reason Codes: The TCPCL uses numeric codes to encode specific reasons for individual failure/
error message types.

The relationship between connections, sessions, and streams is shown in Figure 3.

Sipos, et al. Standards Track Page 7

RFC9174 DTN TCPCLv4 January 2022

B et et R e +
| TCPCL Entity |
| | e +
| Ao + I I | -+
	Actively Initiated Session #1 +------------- >	Other	
e G L L +		TCPCL Entity's	
		Passive	
e e e L +		Listener	
	Actively Initiated Session #n +------------- >		
F o = e m m — s e e m = == = +	F- = - = - = +		
	Fom e - +		
o - +			
+———	o — = e e s s mm = = = = = +	F- = - = - = +	
			Optional Passive
+-	Listener(s) R e T +		
oo + I I			
	I	Other	
	e SR L L L L L L L L L L L L L +		TCPCL Entity's
+--->	Passively Initiated Session #1 +-------- >	Active	
e et +		Initiator(s)	
I I [
I S +			
+--->	Passively Initiated Session #n +-------- >		
T + Fomm - +			
	Pocoosooooooooooos +		
e +

Figure 2: The Relationships between TCPCL Entities
o - + T +
| "Own" TCPCL Session | | "Other" TCPCL Session |
I I I I
RSOSSN eS + I S S e + |
] TCP Connection] TCP Connection		
	[
[Poccccccccccssssss +		Messages	[Pocccccccsssssssss +
[] Own Inbound [e +	Peer Outbound		
		Transfer Stream		Transfer Stream
] e	<---[Seg]l--[Seg]--[Seg]---] = ----- [
	RECEIVER	---[Ack]----[Ack]-------- > SENDER]	
	#====-=--ememeaem- + T e e e +			
	#-=-=-==mmm - —- + Pocoooomoonoonomms +			
		Own Outbound	======= [Seg]---[Seg]----- >	Peer Inbound
		Transfer Stream	<---[Ack]----[Ack]-[Ack]--	Transfer Stream
L s		e	1	
] SENDER I e + RECEIVER]			
		fessesmmsccessazas L		
#==mmm e +	#=-mmmmm e +			
e + e +

Figure 3: The Relationship within a TCPCL Session of’its Two Streams

Sipos, et al. Standards Track Page 8

RFC9174 DTN TCPCLv4 January 2022

3. General Protocol Description

The service of this protocol is the transmission of DTN bundles via TCP. This document specifies
the encapsulation of bundles, procedures for TCP setup and teardown, and a set of messages and
entity requirements. The general operation of the protocol is as follows.

3.1. Convergence-Layer Services

This version of the TCPCL protocol provides the following services to support the overlaying BPA.
In all cases, this is not an API definition but a logical description of how the CL can interact with
the BPA. Each of these interactions can be associated with any number of additional metadata
items as necessary to support the operation of the CL or BPA.

Attempt Session: The TCPCL allows a BPA to preemptively attempt to establish a TCPCL session
with a peer entity. Each session attempt can send a different set of session negotiation
parameters as directed by the BPA.

Terminate Session: The TCPCL allows a BPA to preemptively terminate an established TCPCL
session with a peer entity. The terminate request is done on a per-session basis.

Session State Changed: The TCPCL entity indicates to the BPA when the session state changes.
The top-level session states indicated are as follows:

Connecting: A TCP connection is being established. This state only applies to the active entity.

Contact Negotiating: A TCP connection has been made (as either the active or passive entity),
and contact negotiation has begun.

Session Negotiating: Contact negotiation has been completed (including possible TLS use),
and session negotiation has begun.

Established: The session has been fully established and is ready for its first transfer. When
the session is established, the peer node ID (along with an indication of whether or not it
was authenticated) and the negotiated session parameters (see Section 4.7) are also
communicated to the BPA.

Ending: The entity sent a SESS_TERM message and is in the Ending state.
Terminated: The session has finished normal termination sequencing.

Failed: The session ended without normal termination sequencing.

Sipos, et al. Standards Track Page 9

RFC9174 DTN TCPCLv4 January 2022

Session Idle Changed: The TCPCL entity indicates to the BPA when the Live/Idle substate of the
session changes. This occurs only when the top-level session state is "Established". The session
transitions from Idle to Live at the start of a transfer in either transfer stream; the session
transitions from Live to Idle at the end of a transfer when the other transfer stream does not
have an ongoing transfer. Because the TCPCL transmits serially over a TCP connection, it
suffers from "head-of-queue blocking", so a transfer in either direction can block an
immediate start of a new transfer in the session.

Begin Transmission: The principal purpose of the TCPCL is to allow a BPA to transmit bundle
data over an established TCPCL session. Transmission requests are done on a per-session
basis, and the CL does not necessarily perform any per-session or inter-session queueing. Any
queueing of transmissions is the obligation of the BPA.

Transmission Success: The TCPCL entity indicates to the BPA when a bundle has been fully
transferred to a peer entity.

Transmission Intermediate Progress: The TCPCL entity indicates to the BPA the intermediate
progress of a transfer to a peer entity. This intermediate progress is at the granularity of each
transferred segment.

Transmission Failure: The TCPCL entity indicates to the BPA certain reasons for bundle
transmission failure, notably when the peer entity rejects the bundle or when a TCPCL session
ends before transfer success. The TCPCL itself does not have a notion of transfer timeout.

Reception Initialized: The TCPCL entity indicates this status to the receiving BPA just before any
transmission data is sent. This corresponds to reception of the XFER_SEGMENT message with
the START flag set to 1.

Interrupt Reception: The TCPCL entity allows a BPA to interrupt an individual transfer before it
has fully completed (successfully or not). Interruption can occur any time after the reception
is initialized.

Reception Success: The TCPCL entity indicates to the BPA when a bundle has been fully
transferred from a peer entity.

Reception Intermediate Progress: The TCPCL entity indicates to the BPA the intermediate
progress of a transfer from the peer entity. This intermediate progress is at the granularity of
each transferred segment. An indication of intermediate reception gives a BPA the chance to
inspect bundle header contents before the entire bundle is available and thus supports the
"Interrupt Reception" capability.

Reception Failure: The TCPCL entity indicates to the BPA certain reasons for reception failure,
notably when the local entity rejects an attempted transfer for some local policy reason or
when a TCPCL session ends before transfer success. The TCPCL itself does not have a notion of

transfer timeout.

Sipos, et al. Standards Track Page 10

RFC9174 DTN TCPCLv4 January 2022

3.2. TCPCL Session Overview

First, one entity establishes a TCPCL session to the other by initiating a TCP connection in
accordance with [RFC0793]. After setup of the TCP connection is complete, an initial Contact
Header is exchanged in both directions to establish a shared TCPCL version and negotiate the use
of TLS security (as described in Section 4). Once contact negotiation is complete, TCPCL
messaging is available and the session negotiation is used to set parameters of the TCPCL session.
One of these parameters is a node ID; each TCPCL entity is acting on behalf of a BPA having a
node ID. This is used to assist in routing and forwarding messages by the BPA and is part of the
authentication capability provided by TLS.

Once negotiated, the parameters of a TCPCL session cannot change; if there is a desire by either
peer to transfer data under different parameters, then a new session must be established. This
makes CL logic simpler but relies on the assumption that establishing a TCP connection is
lightweight enough that TCP connection overhead is negligible compared to TCPCL data sizes.

Once the TCPCL session is established and configured in this way, bundles can be transferred in
either direction. Each transfer is performed by segmenting the transfer data into one or more
XFER_SEGMENT messages. Multiple bundles can be transmitted consecutively in a single
direction on a single TCPCL connection. Segments from different bundles are never interleaved.
Bundle interleaving can be accomplished by fragmentation at the BP layer or by establishing
multiple TCPCL sessions between the same peers. There is no fundamental limit on the number of
TCPCL sessions that a single entity can establish, beyond the limit imposed by the number of
available (ephemeral) TCP ports of the active entity.

One feature of this protocol is that the receiving entity can send acknowledgment (XFER_ACK)
messages as bundle data segments arrive. The rationale behind these acknowledgments is to
enable the transmitting entity to determine how much of the bundle has been received, so that if
the session is interrupted, it can perform reactive fragmentation to avoid resending the already-
transmitted part of the bundle. In addition, there is no explicit flow control on the TCPCL.

A TCPCL receiver can interrupt the transmission of a bundle at any point in time by replying with
a XFER_REFUSE message, which causes the sender to stop transmission of the associated bundle
(if it hasn't already finished transmission).

Note: This enables a cross-layer optimization in that it allows a receiver that detects
that it has already received a certain bundle to interrupt transmission as early as
possible and thus save transmission capacity for other bundles.

For sessions that are idle, a KEEPALIVE message is sent at a negotiated interval. This is used to
convey entity liveness information during otherwise messageless time intervals.

A SESS_TERM message is used to initiate the ending of a TCPCL session (see Section 6.1). During
termination sequencing, in-progress transfers can be completed but no new transfers can be
initiated. A SESS_TERM message can also be used to refuse a session setup by a peer (see Section
4.3). Regardless of the reason, session termination is initiated by one of the entities and the other

Sipos, et al. Standards Track Page 11

RFC9174 DTN TCPCLv4 January 2022

entity responds to it, as illustrated by Figures 13 and 14 in the next subsection. Even when there
are no transfers queued or in progress, the session termination procedure allows each entity to
distinguish between a clean end to a session and the TCP connection being closed because of
some underlying network issue.

Once a session is established, the TCPCL is a symmetric protocol between the peers. Both sides can
start sending data segments in a session, and one side's bundle transfer does not have to
complete before the other side can start sending data segments on its own. Hence, the protocol
allows for a bidirectional mode of communication. Note that in the case of concurrent
bidirectional transmission, acknowledgment segments MAY be interleaved with data segments.

3.3. TCPCL States and Transitions

The states of a normal TCPCL session (i.e., without session failures) are indicated in Figure 4.

\%
Fommmmm - + Fom e +
| TCP | o= >| Contact / Session |
| Connected | | Negotiation [
Fommmmm - + o +
|
Poooos Session Parameters----- +
| Negotiated
v
B + o - +
Established	----New Transfer---->	Established
Session	[Session	
Idle	<---Transfers Done---	Live
Fommm - + Fommm - +		
I		
o +		
I		
v		
B +		
Established	Pocssoooooosss +	
Session	----Transfers------ >	TCP
Ending	Done	Terminating
Fommm - + Fommm - +		
Pocssooooos TCP Close Message---------- +		
I		
\%		
+----——- +		
END		
e +

Figure 4: Top-Level States of a TCPCL Session

Sipos, et al. Standards Track Page 12

RFC9174 DTN TCPCLv4 January 2022

Notes on established session states:

* Session "Live" means transmitting or receiving over a transfer stream.
* Session "Idle" means no transmission/reception over a transfer stream.
* Session "Ending" means no new transfers will be allowed.

Contact negotiation involves exchanging a Contact Header ("CH" in Figures 5, 6, and 7) in both
directions and deriving a negotiated state from the two headers. The contact negotiation
sequencing is performed as either the active or passive entity and is illustrated in Figures 5 and 6,
respectively, which both share the data validation and negotiation of the Processing of Contact
Header ("[PCH]") activity (Figure 7) and the "[TCPCLOSE]" activity, which indicates TCP
connection close. Successful negotiation results in one of the Session Initiation ("[SI]") activities
being performed, as shown further below. To avoid data loss, a Session Termination ("[ST]")
exchange allows cleanly finishing transfers before a session is ended.

| TCP | TR .

Received CH

\
[PCH]
Figure 5: Contact Initiation as Active Entity
e + R +
| TCP |--Wait for-->| Waiting |--Timeout-->[TCPCLOSE]
| Connected | CH to—mm - +
e + |
Received CH
Vv
e +
| Preparing reply |--Send CH-->[PCH]
o +

Figure 6: Contact Initiation as Passive Entity

Sipos, et al. Standards Track Page 13

RFC9174

DTN TCPCLv4 January 2022
Fomm - +
| Peer CH |
| available |
Fomm - +
I
Validate and
Negotiate
v
Fom e +
| Negotiated |--Failure-->[TCPCLOSE]
Fommmm - +
| I
No TLS +----Negotiate---+ [ST]
| TLS | 2
% | Failure
ocoooooooos + Vv |
| TCPCL | e T +
| Messaging |<--Success--| TLS Handshake |
| Available | Pocoooonoooonoos +
R +

Figure 7: Processing of Contact Header [PCH]

Session negotiation involves exchanging a session initialization (SESS_INIT) message in both
directions and deriving a negotiated state from the two messages. The session negotiation
sequencing is performed as either the active or passive entity and is illustrated in Figures 8 and 9,
respectively (where "[PSI]" means "Processing of Session Initiation"), which both share the data

validation and negotiation shown in Figure 10. The validation here includes certificate validation
and authentication when TLS is used for the session.

R e +

| TcPCL | P +

| Messaging |--Send SESS_INIT-->| Waiting |--Timeout-->[ST]
| Available | Fom e +

mmmm e +

I

Received SESS_INIT
I
v

[PSI]
Figure 8: Session Initiation [SI] as Active Entity

Sipos, et al. Standards Track Page 14

RFC9174 DTN TCPCLv4 January 2022

o - +

| TCPCL | P +

| Messaging |----Wait for ---->| Waiting |--Timeout-->[ST]
| Available | SESS_INIT e +

ittt +

| Peer SESS_INIT |
| available |

Validate and
Negotiate

| Established |
| Session Idle |

Figure 10: Processing of Session Initiation [PSI]

Transfers can occur after a session is established and it's not in the Ending state. Each transfer
occurs within a single logical transfer stream between a sender and a receiver, as illustrated in
Figures 11 and 12, respectively.

+--Send XFER_SEGMENT--+

oo + | |
| Stream | Poococoosoanss +
| Idle |---Send XFER_SEGMENT-->| In Progress |<------------ +
e + Fom - +
I

e All segments sent------- +

|

v
Fom - + e +
| Waiting |---- Receive Final---->| Stream |
| for Ack | XFER_ACK | Idle |
Fom - + e +

Figure 11: Transfer Sender States

Sipos, et al. Standards Track Page 15

RFC9174 DTN TCPCLv4 January 2022

Note on transfer sending: Pipelining of transfers can occur when the sending entity
begins a new transfer while in the "Waiting for Ack" state.

+-Receive XFER_SEGMENT-+

do-mmm - + | Send XFER_ACK |
| Stream | Poccosoossooss +
| Idle |--Receive XFER_SEGMENT-->| In Progress |[<------------- +
do-mmm - + Fommm - +
I

Pocccooos Sent Final XFER_ACK-------- +

I

\%
R +
| Stream |
| Idle |
R +

Figure 12: Transfer Receiver States

Session termination involves one entity initiating the termination of the session and the other
entity acknowledging the termination. For either entity, it is the sending of the SESS_TERM
message, which transitions the session to the Ending substate. While a session is in the Ending
state, only in-progress transfers can be completed and no new transfers can be started.

| Session |--Send SESS_TERM-->| Session |
| Live/Idle | | Ending |

| Session |--Send SESS_TERM-->| Session |
| Live/Idle | | Ending |

Figure 14: Session Termination [ST] from the Responder

3.4. PKIX Environments and CA Policy

This specification defines requirements regarding how to use PKIX certificates issued by a
Certificate Authority (CA) but does not define any mechanisms for how those certificates come to

be. The requirements regarding TCPCL certificate use are broad, to support two quite different
PKIX environments:

Sipos, et al. Standards Track Page 16

RFC9174 DTN TCPCLv4 January 2022

DTN-Aware CAs: In the ideal case, the CA or CAs issuing certificates for TCPCL entities are aware
of the end use of the certificate, have a mechanism for verifying ownership of a node ID, and
are issuing certificates directly for that node ID. In this environment, the ability to
authenticate a peer entity node ID directly avoids the need to authenticate a network name or
address and then implicitly trust the node ID of the peer. The TCPCL authenticates the node ID
whenever possible; this is preferred over lower-level PKIX identities.

DTN-Ignorant CAs: It is expected that Internet-scale "public” CAs will continue to focus on DNS
names as the preferred PKIX identifier. There are large infrastructures already in place for
managing network-level authentication and protocols to manage identity verification in
those environments [RFC8555]. The TCPCL allows for this type of environment by
authenticating a lower-level identifier for a peer and requiring the entity to trust that the node
ID given by the peer (during session initialization) is valid. This situation is not ideal, as it
allows the vulnerabilities described in Section 7.9, but it still provides some amount of mutual
authentication to take place for a TCPCL session.

Even within a single TCPCL session, each entity may operate within different PKI environments
and with different identifier limitations. The requirements related to identifiers in a PKIX
certificate are provided in Section 4.4.1.

It is important for interoperability that a TCPCL entity have its own security policy tailored to
accommodate the peers with which it is expected to operate. Some security policy
recommendations are given in Section 4.4.5, but these are meant as a starting point for tailoring.
A strict TLS security policy is appropriate for a private network with a single shared CA. Operation
on the Internet (such as inter-site BP gateways) could trade more lax TCPCL security with the use
of encrypted bundle encapsulation [DTN-BIBECT] to ensure strong bundle security.

By using the Server Name Indication (SNI) DNS name (see Section 4.4.3), a single passive entity
can act as a convergence layer for multiple BPAs with distinct node IDs. When this "virtual host"
behavior is used, the DNS name is used as the indication of which BP node the active entity is
attempting to communicate with. A virtual host CL entity can be authenticated by a certificate
containing all of the DNS names and/or node IDs being hosted or by several certificates each
authenticating a single DNS name and/or node ID, using the SNI value from the peer to select
which certificate to use. The logic for mapping an SNI DNS name to an end-entity certificate is an
implementation matter and can involve correlating a DNS name with a node ID or other
certificate attributes.

3.5. Session-Keeping Policies

This specification defines requirements regarding how to initiate, sustain, and terminate a TCPCL
session but does not impose any requirements on how sessions need to be managed by a BPA. It is
a network administration matter to determine an appropriate session-keeping policy, but
guidance given here can be used to steer policy toward performance goals.

Persistent Session: This policy preemptively establishes a single session to known entities in the
network and keeps the session active using KEEPALIVEs. Benefits of this policy include
reducing the total amount of TCP data that needs to be exchanged for a set of transfers

Sipos, et al. Standards Track Page 17

RFC9174 DTN TCPCLv4 January 2022

(assuming that the KEEPALIVE size is significantly smaller than the transfer size) and allowing
the session state to indicate peer connectivity. Drawbacks include wasted network resources
when a session is mostly idle or when network connectivity is inconsistent (which requires
that failed sessions be reestablished), and potential queueing issues when multiple transfers
are requested simultaneously. This policy assumes that there is agreement between pairs of
entities as to which of the peers will initiate sessions; if there is no such agreement, there is
potential for duplicate sessions to be established between peers.

Ephemeral Sessions: This policy only establishes a session when an outgoing transfer needs to
be sent. Benefits of this policy include not wasting network resources on sessions that are idle
for long periods of time and avoiding potential queueing issues as can be seen when using a
single persistent session. Drawbacks include the TCP and TLS overhead of establishing a new
session for each transfer. This policy assumes that each entity can function in a passive role to
listen for session requests from any peer that needs to send a transfer; when that is not the
case, the polling behavior discussed below needs to happen. This policy can be augmented to
keep the session established as long as any transfers are queued.

Active-Only Polling Sessions: When naming and/or addressing of one entity is variable (i.e.,, a
dynamically assigned IP address or domain name) or when firewall or routing rules prevent
incoming TCP connections, that entity can only function in the active role. In these cases,
sessions also need to be established when an incoming transfer is expected from a peer or
based on a periodic schedule. This polling behavior causes inefficiencies compared to as-
needed ephemeral sessions.

Many other policies can be established in a TCPCL network between the two extremes of single
persistent sessions and only ephemeral sessions. Different policies can be applied to each peer
entity and to each bundle as it needs to be transferred (e.g., for quality of service). Additionally,
future session extension types can apply further nuance to session policies and policy
negotiation.

3.6. Transfer Segmentation Policies

Each TCPCL session allows a negotiated transfer segmentation policy to be applied in each
transfer direction. A receiving entity can set the Segment Maximum Receive Unit (MRU) in its
SESS_INIT message to determine the largest acceptable segment size, and a transmitting entity
can segment a transfer into any sizes smaller than the receiver's Segment MRU. It is a network
administration matter to determine an appropriate segmentation policy for entities using the
TCPCL protocol, but guidance given here can be used to steer policy toward performance goals.
Administrators are also advised to consider the Segment MRU in relation to chunking/
packetization performed by TLS, TCP, and any intermediate network-layer nodes.

Minimum Overhead: For a simple network expected to exchange relatively small bundles, the
Segment MRU can be set to be identical to the Transfer MRU, which indicates that all transfers
can be sent with a single data segment (i.e., no actual segmentation). If the network is closed
and all transmitters are known to follow a single-segment transfer policy, then receivers can
avoid the necessity of segment reassembly. Because this CL operates over a TCP stream, which

Sipos, et al. Standards Track Page 18

RFC9174 DTN TCPCLv4 January 2022

suffers from a form of head-of-queue blocking between messages, while one entity is
transmitting a single XFER_SEGMENT message it is not able to transmit any XFER_ACK or
XFER_REFUSE messages for any associated received transfers.

Predictable Message Sizing: In situations where the maximum message size is desired to be well
controlled, the Segment MRU can be set to the largest acceptable size (the message size less the
XFER_SEGMENT header size) and transmitters can always segment a transfer into maximum-
size chunks no larger than the Segment MRU. This guarantees that any single XFER_SEGMENT
will not monopolize the TCP stream for too long, which would prevent outgoing XFER_ACK and
XFER_REFUSE messages associated with received transfers.

Dynamic Segmentation: Even after negotiation of a Segment MRU for each receiving entity, the
actual transfer segmentation only needs to guarantee that any individual segment is no larger
than that MRU. In a situation where TCP throughput is dynamic, the transfer segmentation
size can also be dynamic in order to control message transmission duration.

Many other policies can be established in a TCPCL network between the two extremes of
minimum overhead (large MRU, single segment) and predictable message sizing (small MRU,
highly segmented). Different policies can be applied to each transfer stream to and from any
particular entity. Additionally, future session extension and transfer extension types can apply
further nuance to transfer policies and policy negotiation.

3.7. Example Message Exchange

Figure 15 depicts the protocol exchange for a simple session, showing the session establishment
and the transmission of a single bundle split into three data segments (oflengths "L1", "L2", and
"L3") from Entity A to Entity B.

Note that the sending entity can transmit multiple XFER_SEGMENT messages without waiting for
the corresponding XFER_ACK responses. This enables pipelining of messages on a transfer
stream. Although this example only demonstrates a single bundle transmission, it is also possible
to pipeline multiple XFER_SEGMENT messages for different bundles without necessarily waiting
for XFER_ACK messages to be returned for each one. However, interleaving data segments from
different bundles is not allowed.

No errors or rejections are shown in this example.

Sipos, et al. Standards Track Page 19

RFC9174

Figure 15: An Example of the Flow of Protocol Messages on a Single TCP Session between Two

Entities

DTN TCPCLv4
Entity A
T +
| Open TCP Connection | ->
e + <-
o m - +
| Contact Header | ->
e + <-
o +
| SESS_INIT | ->
e e e + <-
o m - +
| XFER_SEGMENT (start) | ->
| Transfer ID [I1] |
| Length [L1] |
| Bundle Data ©..(L1-1) |
e +
o m - +
| XFER_SEGMENT | -> <-
| Transfer ID [I1] |
| Length [L2] |
|Bundle Data L1..(L1+L2-1)|
T +
o m - +
XFER_SEGMENT (end) -> <-

| |
| Transfer ID [I1] |
| Length [L3] |
|Bundle Data |
| (L1+L2) .. (L1+L2+L3-1) |

o m - +
T +
| SESS_TERM |
o m - +
= e +
| TCP Close |
T +

4. Session Establishment

For bundle transmissions to occur using the TCPCL, a TCPCL session MUST first be established

< -

January 2022

Entity B

XFER_ACK (start)
Transfer ID [I1]
Length [L1]

XFER_ACK
Transfer ID [I1]
Length [L1+L2]

XFER_ACK (end)
Transfer ID [I1]
Length [L1+L2+L3]

between communicating entities. It is up to the implementation to decide how and when session
setup is triggered. For example, some sessions can be opened proactively and maintained for as

Sipos, et al

Standards Track

Page 20

RFC9174 DTN TCPCLv4 January 2022

long as is possible given the network conditions, while other sessions will be opened only when
there is a bundle that is queued for transmission and the routing algorithm selects a certain next-
hop node.

4.1. TCP Connection

To establish a TCPCL session, an entity MUST first establish a TCP connection with the intended
peer entity, typically by using the services provided by the operating system. Destination port
number 4556 has been assigned by IANA as the registered port number for the TCPCL; see Section
8.1. Other destination port numbers MAY be used per local configuration. Determining a peer's
destination port number (if different from the registered TCPCL port number) is left up to the
implementation. Any source port number MAY be used for TCPCL sessions. Typically, an operating
system assigned number in the TCP Ephemeral range (49152-65535) is used.

If the entity is unable to establish a TCP connection for any reason, then it is an implementation
matter to determine how to handle the connection failure. An entity MAY decide to reattempt to
establish the connection. If it does so, it MUST NOT overwhelm its target with repeated connection
attempts. Therefore, the entity MUST NOT retry the connection setup earlier than some delay time
from the last attempt, and it SHOULD use a (binary) exponential backoff mechanism to increase
this delay in the case of repeated failures. The upper limit on a reattempt backoffis
implementation defined but SHOULD be no longer than one minute (60 seconds) before signaling
to the BPA that a connection cannot be made.

Once a TCP connection is established, the active entity SHALL immediately transmit its Contact
Header. The passive entity SHALL wait for the active entity's Contact Header. Upon reception of a
Contact Header, the passive entity SHALL transmit its Contact Header. If either entity does not
receive a Contact Header after some implementation-