Stream: Internet Engineering Task Force (IETF)

RFC: 8995
Category: Standards Track
Published: May 2021
ISSN: 2070-1721
Authors:
M. Pritikin M. Richardson T. Eckert M. Behringer = K. Watsen
Cisco Sandelman Software Works Futurewei USA Watsen Networks

RFC 8995
Bootstrapping Remote Secure Key Infrastructure
(BRSKI)

Abstract

This document specifies automated bootstrapping of an Autonomic Control Plane. To do this, a
Secure Key Infrastructure is bootstrapped. This is done using manufacturer-installed X.509
certificates, in combination with a manufacturer's authorizing service, both online and offline.
We call this process the Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol.
Bootstrapping a new device can occur when using a routable address and a cloud service, only
link-local connectivity, or limited/disconnected networks. Support for deployment models with
less stringent security requirements is included. Bootstrapping is complete when the
cryptographic identity of the new key infrastructure is successfully deployed to the device. The
established secure connection can be used to deploy a locally issued certificate to the device as
well.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at https://www.rfc-editor.org/info/rfc8995.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

Pritikin, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8995
https://www.rfc-editor.org/info/rfc8995

RFC 8995 BRSKI May 2021

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Prior Bootstrapping Approaches
1.2. Terminology
1.3. Scope of Solution
1.3.1. Support Environment
1.3.2. Constrained Environments
1.3.3. Network Access Controls

1.3.4. Bootstrapping is Not Booting

1.4. Leveraging the New Key Infrastructure / Next Steps

1.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices

2. Architectural Overview
2.1. Behavior of a Pledge
2.2. Secure Imprinting Using Vouchers
2.3. Initial Device Identifier
2.3.1. Identification of the Pledge
2.3.2. MASA URI Extension

2.4. Protocol Flow

2.5. Architectural Components
2.5.1. Pledge
2.5.2. Join Proxy
2.5.3. Domain Registrar
2.5.4. Manufacturer Service

2.5.5. Public Key Infrastructure (PKI)

Pritikin, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

RFC 8995 BRSKI May 2021

2.6. Certificate Time Validation
2.6.1. Lack of Real-Time Clock
2.6.2. Infinite Lifetime of IDevID

2.7. Cloud Registrar
2.8. Determining the MASA to Contact

3. Voucher-Request Artifact
3.1. Nonceless Voucher-Requests
3.2. Tree Diagram
3.3. Examples
3.4. YANG Module

4. Proxying Details (Pledge -- Proxy -- Registrar)
4.1. Pledge Discovery of Proxy
4.1.1. Proxy GRASP Announcements

4.2. CoAP Connection to Registrar

4.3. Proxy Discovery and Communication of Registrar
5. Protocol Details (Pledge -- Registrar -- MASA)

5.1. BRSKI-EST TLS Establishment Details

5.2. Pledge Requests Voucher from the Registrar

5.3. Registrar Authorization of Pledge

5.4. BRSKI-MASA TLS Establishment Details

5.4.1. MASA Authentication of Customer Registrar

5.5. Registrar Requests Voucher from MASA
5.5.1. MASA Renewal of Expired Vouchers
5.5.2. MASA Pinning of Registrar
5.5.3. MASA Check of the Voucher-Request Signature
5.5.4. MASA Verification of the Domain Registrar
5.5.5. MASA Verification of the Pledge "prior-signed-voucher-request'
5.5.6. MASA Nonce Handling

5.6. MASA and Registrar Voucher Response
5.6.1. Pledge Voucher Verification

Pritikin, et al. Standards Track Page 3

RFC 8995 BRSKI

5.6.2. Pledge Authentication of Provisional TLS Connection

5.7. Pledge BRSKI Status Telemetry

5.8. Registrar Audit-Log Request
5.8.1. MASA Audit-Log Response
5.8.2. Calculation of domainID

5.8.3. Registrar Audit-Log Verification

5.9. EST Integration for PKI Bootstrapping
5.9.1. EST Distribution of CA Certificates
5.9.2. EST CSR Attributes
5.9.3. EST Client Certificate Request
5.9.4. Enrollment Status Telemetry
5.9.5. Multiple Certificates
5.9.6. EST over CoAP

6. Clarification of Transfer-Encoding
7. Reduced Security Operational Modes
7.1. Trust Model
7.2. Pledge Security Reductions
7.3. Registrar Security Reductions
7.4. MASA Security Reductions
7.4.1. Issuing Nonceless Vouchers
7.4.2. Trusting Owners on First Use

7.4.3. Updating or Extending Voucher Trust Anchors

8. IANA Considerations
8.1. The IETF XML Registry
8.2. YANG Module Names Registry
8.3. BRSKI Well-Known Considerations
8.3.1. BRSKI .well-known Registration
8.3.2. BRSKI .well-known Registry

8.4. PKIX Registry
8.5. Pledge BRSKI Status Telemetry

Pritikin, et al. Standards Track

May 2021

Page 4

RFC 8995 BRSKI May 2021

8.6. DNS Service Names
8.7. GRASP Objective Names

9. Applicability to the Autonomic Control Plane (ACP)
9.1. Operational Requirements
9.1.1. MASA Operational Requirements
9.1.2. Domain Owner Operational Requirements

9.1.3. Device Operational Requirements

10. Privacy Considerations
10.1. MASA Audit-Log
10.2. What BRSKI-EST Reveals
10.3. What BRSKI-MASA Reveals to the Manufacturer
10.4. Manufacturers and Used or Stolen Equipment
10.5. Manufacturers and Grey Market Equipment
10.6. Some Mitigations for Meddling by Manufacturers

10.7. Death of a Manufacturer

11. Security Considerations

11.1. Denial of Service (DoS) against MASA

11.2. DomainID Must Be Resistant to Second-Preimage Attacks

11.3. Availability of Good Random Numbers

11.4. Freshness in Voucher-Requests

11.5. Trusting Manufacturers

11.6. Manufacturer Maintenance of Trust Anchors
11.6.1. Compromise of Manufacturer IDevID Signing Keys
11.6.2. Compromise of MASA Signing Keys
11.6.3. Compromise of MASA Web Service

11.7. YANG Module Security Considerations

12. References
12.1. Normative References

12.2. Informative References

Pritikin, et al. Standards Track Page 5

RFC 8995 BRSKI May 2021

Appendix A. IPv4 and Non-ANI Operations
A.1. IPv4 Link-Local Addresses
A.2. Use of DHCPv4

Appendix B. mDNS / DNS-SD Proxy Discovery Options
Appendix C. Example Vouchers
C.1. Keys Involved
C.1.1. Manufacturer Certification Authority for IDevID Signatures
C.1.2. MASA Key Pair for Voucher Signatures
C.1.3. Registrar Certification Authority
C.1.4. Registrar Key Pair
C.1.5. Pledge Key Pair

C.2. Example Process
C.2.1. Pledge to Registrar
C.2.2. Registrar to MASA
C.2.3. MASA to Registrar

Acknowledgements

Authors' Addresses

1. Introduction

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol provides a solution for
secure zero-touch (automated) bootstrap of new (unconfigured) devices that are called "pledges"
in this document. Pledges have an Initial Device Identifier (IDevID) installed in them at the
factory.

"BRSKI", pronounced like "brewski", is a colloquial term for beer in Canada and parts of the
Midwestern United States [brewski].

This document primarily provides for the needs of the ISP and enterprise-focused Autonomic
Networking Integrated Model and Approach (ANIMA) Autonomic Control Plane (ACP) [RFC8994].
This bootstrap process satisfies the requirement of making all operations secure by default per
Section 3.3 of [RFC7575]. Other users of the BRSKI protocol will need to provide separate
applicability statements that include privacy and security considerations appropriate to that
deployment. Section 9 explains the detailed applicability for this ACP usage.

Pritikin, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7575#section-3.3

RFC 8995 BRSKI May 2021

The BRSKI protocol requires a significant amount of communication between manufacturer and
owner: in its default modes, it provides a cryptographic transfer of control to the initial owner. In
its strongest modes, it leverages sales channel information to identify the owner in advance.
Resale of devices is possible, provided that the manufacturer is willing to authorize the transfer.
Mechanisms to enable transfers of ownership without manufacturer authorization are not
included in this version of the protocol, but it could be designed into future versions.

This document describes how a pledge discovers (or are discovered by) an element of the
network domain that it will belong to and that will perform its bootstrap. This element (device) is
called the "registrar". Before any other operation, the pledge and registrar need to establish
mutual trust:

1. Registrar authenticating the pledge: "Who is this device? What is its identity?"

2. Registrar authorizing the pledge: "Is it mine? Do I want it? What are the chances it has been
compromised?"”

3. Pledge authenticating the registrar: "What is this registrar's identity?"
4. Pledge authorizing the registrar: "Should I join this network?"

This document details protocols and messages to answer the above questions. It uses a TLS
connection and a PKIX-shaped (X.509v3) certificate (an IEEE 802.1AR IDevID [IDevID]) of the
pledge to answer points 1 and 2. It uses a new artifact called a "voucher" that the registrar
receives from a Manufacturer Authorized Signing Authority (MASA) and passes it to the pledge to
answer points 3 and 4.

A proxy provides very limited connectivity between the pledge and the registrar.

The syntactic details of vouchers are described in detail in [RFC8366]. This document details
automated protocol mechanisms to obtain vouchers, including the definition of a "voucher-
request” message that is a minor extension to the voucher format (see Section 3) as defined by
[RFC8366].

BRSKI results in the pledge storing an X.509 root certificate sufficient for verifying the registrar
identity. In the process, a TLS connection is established that can be directly used for Enrollment
over Secure Transport (EST). In effect, BRSKI provides an automated mechanism for "Bootstrap
Distribution of CA Certificates" described in [RFC7030], Section 4.1.1, wherein the pledge "MUST
[...] engage a human user to authorize the CA certificate using out-of-band data". With BRSKI, the
pledge now can automate this process using the voucher. Integration with a complete EST
enrollment is optional but trivial.

BRSKI is agile enough to support bootstrapping alternative key infrastructures, such as a
symmetric key solution, but no such system is described in this document.

1.1. Prior Bootstrapping Approaches

To literally "pull yourself up by the bootstraps" is an impossible action. Similarly, the secure
establishment of a key infrastructure without external help is also an impossibility. Today, it is
commonly accepted that the initial connections between nodes are insecure, until key

Pritikin, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc7030#section-4.1.1

RFC 8995 BRSKI May 2021

distribution is complete, or that domain-specific keying material (often pre-shared keys,
including mechanisms like Subscriber Identification Module (SIM) cards) is pre-provisioned on
each new device in a costly and non-scalable manner. Existing automated mechanisms are
known as non-secured "Trust on First Use (TOFU)" [RFC7435], "resurrecting duckling"
[Stajano99theresurrecting], or "pre-staging".

Another prior approach has been to try and minimize user actions during bootstrapping, but not
eliminate all user actions. The original EST protocol [RFC7030] does reduce user actions during
bootstrapping but does not provide solutions for how the following protocol steps can be made
autonomic (not involving user actions):

¢ using the Implicit Trust Anchor (TA) [RFC7030] database to authenticate an owner-specific
service (not an autonomic solution because the URL must be securely distributed),

* engaging a human user to authorize the CA certificate using out-of-band data (not an
autonomic solution because the human user is involved),

* using a configured Explicit TA database (not an autonomic solution because the distribution
of an explicit TA database is not autonomic), and

* using a certificate-less TLS mutual authentication method (not an autonomic solution
because the distribution of symmetric key material is not autonomic).

These "touch" methods do not meet the requirements for zero-touch.

There are "call home" technologies where the pledge first establishes a connection to a well-
known manufacturer service using a common client-server authentication model. After mutual
authentication, appropriate credentials to authenticate the target domain are transferred to the
pledge. This creates several problems and limitations:

¢ the pledge requires real-time connectivity to the manufacturer service,
¢ the domain identity is exposed to the manufacturer service (this is a privacy concern), and

 the manufacturer is responsible for making the authorization decisions (this is a liability
concern).

BRSKI addresses these issues by defining extensions to the EST protocol for the automated
distribution of vouchers.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

The following terms are defined for clarity:

ANI: The Autonomic Networking Infrastructure as defined by [RFC8993]. Section 9 details
specific requirements for pledges, proxies, and registrars when they are part of an ANIL.

Pritikin, et al. Standards Track Page 8

RFC 8995 BRSKI May 2021

Circuit Proxy: A stateful implementation of the Join Proxy. This is the assumed type of proxy.

drop-ship: The physical distribution of equipment containing the "factory default”
configuration to a final destination. In zero-touch scenarios, there is no staging or
preconfiguration during drop-ship.

Domain: The set of entities that share a common local trust anchor. This includes the proxy,
registrar, domain CA, management components, and any existing entity that is already a
member of the domain.

Domain CA: The domain Certification Authority (CA) provides certification functionalities to the
domain. At a minimum, it provides certification functionalities to a registrar and manages the
private key that defines the domain. Optionally, it certifies all elements.

domainID: The domain IDentity is a unique value based upon the registrar's CA certificate.
Section 5.8.2 specifies how it is calculated.

enrollment: The process where a device presents key material to a network and acquires a
network-specific identity. For example, when a certificate signing request is presented to a CA,
and a certificate is obtained in response.

IDevID: An Initial Device Identifier X.509 certificate installed by the vendor on new equipment.
This is a term from 802.1AR [IDevID].

imprint: The process where a device obtains the cryptographic key material to identify and
trust future interactions with a network. This term is taken from Konrad Lorenz's work in
biology with new ducklings: during a critical period, the duckling would assume that anything
that looks like a mother duck is in fact their mother. An equivalent for a device is to obtain
the fingerprint of the network's root CA certificate. A device that imprints on an attacker
suffers a similar fate to a duckling that imprints on a hungry wolf. Securely imprinting is a
primary focus of this document [imprinting]. The analogy to Lorenz's work was first noted in
[Stajano99theresurrecting].

IPIP Proxy: A stateless proxy alternative.

Join Proxy: A domain entity that helps the pledge join the domain. A Join Proxy facilitates
communication for devices that find themselves in an environment where they are not
provided connectivity until after they are validated as members of the domain. For simplicity,
this document sometimes uses the term of "proxy" to indicate the Join Proxy. The pledge is
unaware that they are communicating with a proxy rather than directly with a registrar.

Join Registrar (and Coordinator): A representative of the domain that is configured, perhaps
autonomically, to decide whether a new device is allowed to join the domain. The
administrator of the domain interfaces with a "Join Registrar (and Coordinator)" to control
this process. Typically, a Join Registrar is "inside" its domain. For simplicity, this document
often refers to this as just "registrar”. Within [RFC8993], it is referred to as the "Join Registrar
Autonomic Service Agent (ASA)". Other communities use the abbreviation "JRC".

LDevID: A Local Device Identifier X.509 certificate installed by the owner of the equipment.
This is a term from 802.1AR [IDevID].

Pritikin, et al. Standards Track Page 9

RFC 8995 BRSKI May 2021

manufacturer: The term manufacturer is used throughout this document as the entity that
created the device. This is typically the original equipment manufacturer (OEM), but in more
complex situations, it could be a value added retailer (VAR), or possibly even a systems
integrator. In general, a goal of BRSKI is to eliminate small distinctions between different
sales channels. The reason for this is that it permits a single device, with a uniform firmware
load, to be shipped directly to all customers. This eliminates costs for the manufacturer. This
also reduces the number of products supported in the field, increasing the chance that
firmware will be more up to date.

MASA Audit-Log: An anonymized list of previous owners maintained by the MASA on a per-
device (per-pledge) basis, as described in Section 5.8.1.

MASA Service: A third-party MASA service on the global Internet. The MASA signs vouchers. It
also provides a repository for audit-log information of privacy-protected bootstrapping
events. It does not track ownership.

nonced: A voucher (or request) that contains a nonce (the normal case).

nonceless: A voucher (or request) that does not contain a nonce and either relies upon accurate
clocks for expiration or does not expire.

offline: When an architectural component cannot perform real-time communications with a
peer, due to either network connectivity or the peer being turned off, the operation is said to
be occurring offline.

Ownership Tracker: An Ownership Tracker service on the global Internet. The Ownership
Tracker uses business processes to accurately track ownership of all devices shipped against
domains that have purchased them. Although optional, this component allows vendors to
provide additional value in cases where their sales and distribution channels allow for
accurate tracking of such ownership. Tracking information about ownership is indicated in
vouchers, as described in [RFC8366].

Pledge: The prospective (unconfigured) device, which has an identity installed at the factory.

(Public) Key Infrastructure: The collection of systems and processes that sustains the activities
of a public key system. The registrar acts as a "Registration Authority"; see [RFC5280] and
Section 7 of [RFC5272].

TOFU: Trust on First Use. Used similarly to how it is described in [RFC7435]. This is where a
pledge device makes no security decisions but rather simply trusts the first registrar it is
contacted by. This is also known as the "resurrecting duckling" model.

Voucher: A signed artifact from the MASA that indicates the cryptographic identity of the
registrar it should trust to a pledge. There are different types of vouchers depending on how
that trust is asserted. Multiple voucher types are defined in [RFC8366].

Pritikin, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc5272#section-7

RFC 8995 BRSKI May 2021

1.3. Scope of Solution

1.3.1. Support Environment

This solution (BRSKI) can support large router platforms with multi-gigabit inter-connections,
mounted in controlled access data centers. But this solution is not exclusive to large equipment:
it is intended to scale to thousands of devices located in hostile environments, such as ISP-
provided Customer Premises Equipment (CPE) devices that are drop-shipped to the end user. The
situation where an order is fulfilled from a distributed warehouse from a common stock and
shipped directly to the target location at the request of a domain owner is explicitly supported.
That stock ("SKU") could be provided to a number of potential domain owners, and the eventual
domain owner will not know a priori which device will go to which location.

The bootstrapping process can take minutes to complete depending on the network
infrastructure and device processing speed. The network communication itself is not optimized
for speed; for privacy reasons, the discovery process allows for the pledge to avoid announcing
its presence through broadcasting.

Nomadic or mobile devices often need to acquire credentials to access the network at the new
location. An example of this is mobile phone roaming among network operators, or even
between cell towers. This is usually called "handoff". BRSKI does not provide a low-latency
handoff, which is usually a requirement in such situations. For these solutions, BRSKI can be
used to create a relationship (an LDevID) with the "home" domain owner. The resulting
credentials are then used to provide credentials more appropriate for a low-latency handoff.

1.3.2. Constrained Environments

Questions have been posed as to whether this solution is suitable in general for Internet of
Things (IoT) networks. This depends on the capabilities of the devices in question. The
terminology of [RFC7228] is best used to describe the boundaries.

The solution described in this document is aimed in general at non-constrained (i.e., Class 2+
[RFC7228]) devices operating on a non-challenged network. The entire solution as described here
is not intended to be usable as is by constrained devices operating on challenged networks (such
as 802.15.4 Low-Power and Lossy Networks (LLNSs)).

Specifically, there are protocol aspects described here that might result in congestion collapse or
energy exhaustion of intermediate battery-powered routers in an LLN. Those types of networks
should not use this solution. These limitations are predominately related to the large credential
and key sizes required for device authentication. Defining symmetric key techniques that meet
the operational requirements is out of scope, but the underlying protocol operations (TLS
handshake and signing structures) have sufficient algorithm agility to support such techniques
when defined.

The imprint protocol described here could, however, be used by non-energy constrained devices
joining a non-constrained network (for instance, smart light bulbs are usually mains powered
and use 802.11 wireless technology). It could also be used by non-constrained devices across a

Pritikin, et al. Standards Track Page 11

RFC 8995 BRSKI May 2021

non-energy constrained, but challenged, network (such as 802.15.4). The certificate contents, and
the process by which the four questions above are resolved, do apply to constrained devices. It is
simply the actual on-the-wire imprint protocol that could be inappropriate.

1.3.3. Network Access Controls

This document presumes that network access control has already occurred, is not required, or is
integrated by the proxy and registrar in such a way that the device itself does not need to be
aware of the details. Although the use of an X.509 IDevID is consistent with IEEE 802.1AR
[[DevID], and allows for alignment with 802.1X network access control methods, its use here is
for pledge authentication rather than network access control. Integrating this protocol with
network access control, perhaps as an Extensible Authentication Protocol (EAP) method (see
[RFC3748]), is out of scope for this document.

1.3.4. Bootstrapping is Not Booting

This document describes "bootstrapping"” as the protocol used to obtain a local trust anchor. It is
expected that this trust anchor, along with any additional configuration information
subsequently installed, is persisted on the device across system restarts ("booting").
Bootstrapping occurs only infrequently such as when a device is transferred to a new owner or
has been reset to factory default settings.

1.4. Leveraging the New Key Infrastructure / Next Steps

As a result of the protocol described herein, bootstrapped devices have the domain CA trust
anchor in common. An end-entity (EE) certificate has optionally been issued from the domain CA.
This makes it possible to securely deploy functionalities across the domain; for example:

* Device management
* Routing authentication
* Service discovery

The major intended benefit is the ability to use the credentials deployed by this protocol to
secure the Autonomic Control Plane (ACP) [RFC8994].

1.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices

The BRSKI protocol can be used in a number of environments. Some of the options in this
document are the result of requirements that are out of the ANI scope. This section defines the
base requirements for ANI devices.

For devices that intend to become part of an ANI [RFC8993] that includes an Autonomic Control
Plane [RFC8994], the BRSKI protocol MUST be implemented.

The pledge must perform discovery of the proxy as described in Section 4.1 using the Discovery
Unsolicited Link-Local (DULL) [RFC8990] M_FLOOD announcements of the GeneRic Autonomic
Signaling Protocol (GRASP).

Pritikin, et al. Standards Track Page 12

RFC 8995 BRSKI

May 2021

Upon successfully validating a voucher artifact, a status telemetry MUST be returned; see Section

5.7.

An ANIMA ANI pledge MUST implement the EST automation extensions described in Section 5.9.
They supplement the EST [RFC7030] to better support automated devices that do not have an end

user.

The ANI Join Registrar ASA MUST support all the BRSKI and above-listed EST operations.

All ANI devices SHOULD support the BRSKI proxy function, using Circuit Proxies over the

Autonomic Control Plane (ACP) (see Section 4.3).

2. Architectural Overview

The logical elements of the bootstrapping framework are described in this section. Figure 1

provides a simplified overview of the components.

+ ________________________

e e Drop-Ship---------------- | Vendor Service
| froscosonoonosooooonnann0s
| | M anufacturer|
| | A uthorized |Ownership|
| | S igning | Tracker
| | A uthority |
| Fom - e +
| A
| | BRSKI-
Vv | MASA

et P | ..

I I I

| | Fomm - + Fomm - + |

I I I I I I I

|Pledge | | Join | | Domain <=--=--- +

| |] Proxy | | Registrar |

| <——---——- > <—----—- > (PKI RA) |

| | | BRSKI-EST | |

I I I I - +o---- +

| IDevID | F-——————————- + | e.g., RFC 70630

| | o Fom e +

| | | Key Infrastructure |

| | | (e.g., PKI CA) |

+------- + | |

"Domain" Components

Figure 1: Architecture Overview

Pritikin, et al. Standards Track

Page 13

RFC 8995 BRSKI May 2021

We assume a multivendor network. In such an environment, there could be a manufacturer
service for each manufacturer that supports devices following this document's specification, or
an integrator could provide a generic service authorized by multiple manufacturers. It is
unlikely that an integrator could provide ownership tracking services for multiple
manufacturers due to the required sales channel integrations necessary to track ownership.

The domain is the managed network infrastructure with a key infrastructure that the pledge is
joining. The domain provides initial device connectivity sufficient for bootstrapping through a
proxy. The domain registrar authenticates the pledge, makes authorization decisions, and
distributes vouchers obtained from the manufacturer service. Optionally, the registrar also acts
as a PKI CA.

2.1. Behavior of a Pledge

The pledge goes through a series of steps, which are outlined here at a high level.

Pritikin, et al. Standards Track Page 14

RFC 8995 BRSKI May 2021

/ Factory \
\ default /

_____ +______
I
e VAEEEEEE +
| (1) Discover |
- > |
| +-—---- R +
I I
| R Vi=————=— +
| | (2) Identify |
(S En e + |
| rejected +------ +-——————- +
I I
| rocooos V--——---——- 1
| | (3) Request |
I | Join |
| +-—---- R +
I I
| +----=-- Vo= —-- +
| | (4) Imprint |
A S o |
| Bad MASA +------ +------- +
| response | send Voucher Status Telemetry
| R Vi=————=— +
| | (5) Enroll |<---+ (non-error HTTP codes)
A it + I_.__/ (e.g., 202 "Retry-After")
| Enroll +---——- +omm o +
| failure |
r = V------
| / Enrolled \
L + |
Factory \S=mmsooaooos /
reset

Figure 2: Pledge State Diagram
State descriptions for the pledge are as follows:

1. Discover a communication channel to a registrar.

2. Identify itself. This is done by presenting an X.509 IDevID credential to the discovered
registrar (via the proxy) in a TLS handshake. (The registrar credentials are only provisionally
accepted at this time.)

3. Request to join the discovered registrar. A unique nonce is included, ensuring that any
responses can be associated with this particular bootstrapping attempt.

4. Imprint on the registrar. This requires verification of the manufacturer-service-provided
voucher. A voucher contains sufficient information for the pledge to complete authentication
of a registrar. This document details this step in depth.

5. Enroll. After imprint, an authenticated TLS (HTTPS) connection exists between the pledge
and registrar. EST [RFC7030] can then be used to obtain a domain certificate from a registrar.

Pritikin, et al. Standards Track Page 15

RFC 8995 BRSKI May 2021

The pledge is now a member of, and can be managed by, the domain and will only repeat the
discovery aspects of bootstrapping if it is returned to factory default settings.

This specification details integration with EST enrollment so that pledges can optionally obtain a
locally issued certificate, although any Representational State Transfer (REST) (see [REST])
interface could be integrated in future work.

2.2. Secure Imprinting Using Vouchers

A voucher is a cryptographically protected artifact (using a digital signature) to the pledge device
authorizing a zero-touch imprint on the registrar domain.

The format and cryptographic mechanism of vouchers is described in detail in [RFC8366].

Vouchers provide a flexible mechanism to secure imprinting: the pledge device only imprints
when a voucher can be validated. At the lowest security levels, the MASA can indiscriminately
issue vouchers and log claims of ownership by domains. At the highest security levels, issuance
of vouchers can be integrated with complex sales channel integrations that are beyond the scope
of this document. The sales channel integration would verify actual (legal) ownership of the
pledge by the domain. This provides the flexibility for a number of use cases via a single common
protocol mechanism on the pledge and registrar devices that are to be widely deployed in the
field. The MASA services have the flexibility to either leverage the currently defined claim
mechanisms or experiment with higher or lower security levels.

Vouchers provide a signed but non-encrypted communication channel among the pledge, the
MASA, and the registrar. The registrar maintains control over the transport and policy decisions,
allowing the local security policy of the domain network to be enforced.

2.3. Initial Device Identifier

Pledge authentication and pledge voucher-request signing is via a PKIX-shaped certificate
installed during the manufacturing process. This is the 802.1AR IDevID, and it provides a basis
for authenticating the pledge during the protocol exchanges described here. There is no
requirement for a common root PKI hierarchy. Each device manufacturer can generate its own
root certificate. Specifically, the IDevID enables:

* Uniquely identifying the pledge by the Distinguished Name (DN) and subjectAltName (SAN)
parameters in the IDevID. The unique identification of a pledge in the voucher objects are
derived from those parameters as described below. Section 10.3 discusses privacy
implications of the identifier.

* Providing a cryptographic authentication of the pledge to the registrar (see Section 5.3).
* Securing auto-discovery of the pledge's MASA by the registrar (see Section 2.8).

* Signing of a voucher-request by the pledge's IDevID (see Section 3).

* Providing a cryptographic authentication of the pledge to the MASA (see Section 5.5.5).

Pritikin, et al. Standards Track Page 16

RFC 8995 BRSKI May 2021

Sections 7.2.13 (2009 edition) and 8.10.3 (2018 edition) of [IDevID] discuss keyUsage and
extendedKeyUsage extensions in the IDevID certificate. [[DevID] acknowledges that adding
restrictions in the certificate limits applicability of these long-lived certificates. This specification
emphasizes this point and therefore RECOMMENDS that no key usage restrictions be included.
This is consistent with [RFC5280], Section 4.2.1.3, which does not require key usage restrictions
for end-entity certificates.

2.3.1. Identification of the Pledge

In the context of BRSKI, pledges have a 1:1 relationship with a "serial-number". This serial-
number is used both in the serial-number field of a voucher or voucher-requests (see Section 3)
and in local policies on the registrar or MASA (see Section 5).

There is a (certificate) serialNumber field defined in [RFC5280], Section 4.1.2.2. In ASN.1, this is
referred to as the CertificateSerialNumber. This field is NOT relevant to this specification. Do not
confuse this field with the serial-number defined by this document, or by [[DevID] and
[RFC4519], Section 2.31.

The device serial number is defined in Appendix A.1 of [RFC5280] as the X520SerialNumber, with
the OID tag id-at-serialNumber.

The device serialNumber field (X520SerialNumber) is used as follows by the pledge to build the
serial-number that is placed in the voucher-request. In order to build it, the fields need to be
converted into a serial-number of "type string".

An example of a printable form of the serialNumber field is provided in [RFC4519], Section 2.31
("WI-3005"). That section further provides equality and syntax attributes.

Due to the reality of existing device identity provisioning processes, some manufacturers have
stored serial-numbers in other fields. Registrars SHOULD be configurable, on a per-manufacturer
basis, to look for serial-number equivalents in other fields.

As explained in Section 5.5, the registrar MUST again extract the serialNumber itself from the
pledge's TLS certificate. It can consult the serial-number in the pledge request if there is any
possible confusion about the source of the serial-number.

2.3.2. MASA URI Extension

This document defines a new PKIX non-critical certificate extension to carry the MASA URI. This
extension is intended to be used in the IDevID certificate. The URI is represented as described in
Section 7.4 of [RFC5280].

The URI provides the authority information. The BRSKI "/well-known" tree [RFC8615] is
described in Section 5.

Pritikin, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.3
https://www.rfc-editor.org/rfc/rfc5280#section-4.1.2.2
https://www.rfc-editor.org/rfc/rfc4519#section-2.31
https://www.rfc-editor.org/rfc/rfc5280#appendix-A.1
https://www.rfc-editor.org/rfc/rfc4519#section-2.31
https://www.rfc-editor.org/rfc/rfc5280#section-7.4

RFC 8995 BRSKI May 2021

A complete URI MAY be in this extension, including the "scheme”, "authority”, and "path". The
complete URI will typically be used in diagnostic or experimental situations. Typically (and in
consideration to constrained systems), this SHOULD be reduced to only the "authority", in which
case a scheme of "https://" (see [RFC7230], Section 2.7.3) and a "path" of "/.well-known/brski" is to
be assumed.

The registrar can assume that only the "authority" is present in the extension, if there are no
slash (/") characters in the extension.

Section 7.4 of [RFC5280] calls out various schemes that MUST be supported, including the
Lightweight Directory Access Protocol (LDAP), HTTP, and FTP. However, the registrar MUST use
HTTPS for the BRSKI-MASA connection.

The new extension is identified as follows:

<CODE BEGINS>

MASAURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)

id-mod(8) id-mod-MASAURLExtn2016(96) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN
-- EXPORTS ALL --

IMPORTS
EXTENSION
FROM PKIX-CommonTypes-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkixCommon-02(57) }

id-pe FROM PKIX1Explicit-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-explicit-02(51) } ;

MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }
ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
IDENTIFIED BY id-pe-masa-url }

id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe 32 }
MASAURLSyntax ::= IA5String

END

<CODE ENDS>

Figure 3: MASAURL ASN.1 Module

Pritikin, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc7230#section-2.7.3
https://www.rfc-editor.org/rfc/rfc5280#section-7.4

RFC 8995 BRSKI May 2021

The choice of id-pe is based on guidance found in Section 4.2.2 of [RFC5280]: "These extensions
may be used to direct applications to on-line information about the issuer or the subject". The
MASA URL is precisely that: online information about the particular subject.

2.4. Protocol Flow

A representative flow is shown in Figure 4.

Pritikin, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.2

RFC 8995 BRSKI May 2021

R + R + Fomm - + R +
| Pledge | | Circuit | | Domain | | Vendor
| | Join | | Registrar | | Service |
| | | Proxy | | (JRC) | | (MASA) |
T + R + O T + T +
Internet
[discover]

|
|<-RFC 4862 IPv6 addr |
|<-RFC 3927 IPv4 addr |
| —+++++++++++++H > |
| optional: mDNS query| Appendix B
| RFCs 6763/6762 (+) |
| <-+++++++++++++ttt+- |
| GRASP M_FLOOD |
| periodic broadcast]|
[identity] |

Appendix A
C - Circuit
Join Proxy
P - Provisional TLS
Connection

I
I
|
Legend |
I
|
I

| TLS via the Join Proxy

| <--Registrar TLS server authentication---
[PROVISIONAL accept of server cert]

P---X.509 client authentication---------- >
[request join]

P---Voucher-Request(w/nonce for voucher)->

I
|
I
I
|
I
I
|
I
I
|
I
I
|
> |
>|

| Continue with enrollment using now
| bidirectionally authenticated TLS
| session per RFC 7030.

[enrolled]

P [mmmmmmmm e
P | [accept device?]
P | [contact vendor]
P | |--Pledge ID--------
P | | --Domain ID--------
P | | --optional:nonce--->|
P optional: | [extract DomainID]
P can occur in advance | [update audit-log]
P if nonceless | |
P | | <- voucher --------- |
P \mmm e - | w/nonce if provided]
P<--———- voucher--——---——\——-—\———————————— | |
[imprint] | |
|------- voucher status telemetry--------- > | |
| | <-device audit-log--|
| [verify audit-log and voucher] |
[> | |
[enroll] | |
|
|
I

Figure 4: Protocol Time Sequence Diagram

On initial bootstrap, a new device (the pledge) uses a local service auto-discovery (the GeneRic
Autonomic Signaling Protocol (GRASP) or Multicast DNS (mDNS)) to locate a Join Proxy. The Join
Proxy connects the pledge to a local registrar (the JRC).

Having found a candidate registrar, the fledgling pledge sends some information about itself to
the registrar, including its serial number in the form of a voucher-request and its IDevID
certificate as part of the TLS session.

Pritikin, et al. Standards Track Page 20

RFC 8995 BRSKI May 2021

The registrar can determine whether it expected such a device to appear and locates a MASA.
The location of the MASA is usually found in an extension in the IDevID. Having determined that
the MASA is suitable, the entire information from the initial voucher-request (including the
device's serial number) is transmitted over the Internet in a TLS-protected channel to the
manufacturer, along with information about the registrar/owner.

The manufacturer can then apply policy based on the provided information, as well as other
sources of information (such as sales records), to decide whether to approve the claim by the
registrar to own the device; if the claim is accepted, a voucher is issued that directs the device to
accept its new owner.

The voucher is returned to the registrar, but not immediately to the device -- the registrar has an
opportunity to examine the voucher, the MASA's audit-logs, and other sources of information to
determine whether the device has been tampered with and whether the bootstrap should be
accepted.

No filtering of information is possible in the signed voucher, so this is a binary yes-or-no
decision. After the registrar has applied any local policy to the voucher, if it accepts the voucher,
then the voucher is returned to the pledge for imprinting.

The voucher also includes a trust anchor that the pledge uses to represent the owner. This is used
to successfully bootstrap from an environment where only the manufacturer has built-in trust by
the device to an environment where the owner now has a PKI footprint on the device.

When BRSKI is followed with EST, this single footprint is further leveraged into the full owner's
PKI and an LDevID for the device. Subsequent reporting steps provide flows of information to
indicate success/failure of the process.

2.5. Architectural Components

2.5.1. Pledge

The pledge is the device that is attempting to join. It is assumed that the pledge talks to the Join
Proxy using link-local network connectivity. In most cases, the pledge has no other connectivity
until the pledge completes the enrollment process and receives some kind of network credential.

2.5.2. Join Proxy

The Join Proxy provides HTTPS connectivity between the pledge and the registrar. A Circuit
Proxy mechanism is described in Section 4. Additional mechanisms, including a Constrained
Application Protocol (CoAP) mechanism and a stateless IP in IP (IPIP) mechanism, are the subject
of future work.

Pritikin, et al. Standards Track Page 21

RFC 8995 BRSKI May 2021

2.5.3. Domain Registrar

The domain's registrar operates as the BRSKI-MASA client when requesting vouchers from the
MASA (see Section 5.4). The registrar operates as the BRSKI-EST server when pledges request
vouchers (see Section 5.1). The registrar operates as the BRSKI-EST server "Registration
Authority" if the pledge requests an end-entity certificate over the BRSKI-EST connection (see
Section 5.9).

The registrar uses an Implicit Trust Anchor database for authenticating the BRSKI-MASA
connection's MASA TLS server certificate. Configuration or distribution of trust anchors is out of
scope for this specification.

The registrar uses a different Implicit Trust Anchor database for authenticating the BRSKI-EST
connection's pledge TLS Client Certificate. Configuration or distribution of the BRSKI-EST client
trust anchors is out of scope of this specification. Note that the trust anchors in / excluded from
the database will affect which manufacturers' devices are acceptable to the registrar as pledges,
and they can also be used to limit the set of MASAs that are trusted for enrollment.

2.5.4. Manufacturer Service

The manufacturer service provides two logically separate functions: the MASA as described in
Sections 5.5 and 5.6 and an ownership tracking/auditing function as described in Sections 5.7 and
5.8.

2.5.5. Public Key Infrastructure (PKI)

The Public Key Infrastructure (PKI) administers certificates for the domain of concern, providing
the trust anchor(s) for it and allowing enrollment of pledges with domain certificates.

The voucher provides a method for the distribution of a single PKI trust anchor (as the "pinned-
domain-cert"). A distribution of the full set of current trust anchors is possible using the optional
EST integration.

The domain's registrar acts as a Registration Authority [RFC5272], requesting certificates for
pledges from the PKI.

The expectations of the PKI are unchanged from EST [RFC7030]. This document does not place
any additional architectural requirements on the PKI.

2.6. Certificate Time Validation

2.6.1. Lack of Real-Time Clock

When bootstrapping, many devices do not have knowledge of the current time. Mechanisms such
as Network Time Protocols cannot be secured until bootstrapping is complete. Therefore,
bootstrapping is defined with a framework that does not require knowledge of the current time.
A pledge MAY ignore all time stamps in the voucher and in the certificate validity periods if it
does not know the current time.

Pritikin, et al. Standards Track Page 22

RFC 8995 BRSKI May 2021

The pledge is exposed to dates in the following five places: registrar certificate notBefore,
registrar certificate notAfter, voucher created-on, and voucher expires-on. Additionally,
Cryptographic Message Syntax (CMS) signatures contain a signingTime.

A pledge with a real-time clock in which it has confidence MUST check the above time fields in all
certificates and signatures that it processes.

If the voucher contains a nonce, then the pledge MUST confirm the nonce matches the original
pledge voucher-request. This ensures the voucher is fresh. See Section 5.2.

2.6.2. Infinite Lifetime of IDevID

Long-lived pledge certificates "SHOULD be assigned the GeneralizedTime value of
99991231235959Z" for the notAfter field as explained in [RFC5280].

Some deployed IDevID management systems are not compliant with the 802.1AR requirement
for infinite lifetimes and are put in typical <= 3 year certificate lifetimes. Registrars SHOULD be
configurable on a per-manufacturer basis to ignore pledge lifetimes when the pledge does not
follow the recommendations in [RFC5280].

2.7. Cloud Registrar

There exist operationally open networks wherein devices gain unauthenticated access to the
Internet at large. In these use cases, the management domain for the device needs to be
discovered within the larger Internet. The case where a device can boot and get access to a larger
Internet is less likely within the ANIMA ACP scope but may be more important in the future. In
the ANIMA ACP scope, new devices will be quarantined behind a Join Proxy.

Additionally, there are some greenfield situations involving an entirely new installation where a
device may have some kind of management uplink that it can use (such as via a 3G network, for
instance). In such a future situation, the device might use this management interface to learn
that it should configure itself to become the local registrar.

In order to support these scenarios, the pledge MAY contact a well-known URI of a cloud registrar
if a local registrar cannot be discovered or if the pledge's target use cases do not include a local
registrar.

If the pledge uses a well-known URI for contacting a cloud registrar, a manufacturer-assigned
Implicit Trust Anchor database (see [RFEC7030]) MUST be used to authenticate that service as
described in [RFC6125]. The use of a DNS-ID for validation is appropriate, and it may include
wildcard components on the left-mode side. This is consistent with the human-user configuration
of an EST server URI in [RFC7030], which also depends on [RFC6125].

2.8. Determining the MASA to Contact

The registrar needs to be able to contact a MASA that is trusted by the pledge in order to obtain
vouchers.

Pritikin, et al. Standards Track Page 23

RFC 8995 BRSKI May 2021

The device's IDevID will normally contain the MASA URL as detailed in Section 2.3. This is the
RECOMMENDED mechanism.

In some cases, it can be operationally difficult to ensure the necessary X.509 extensions are in the
pledge's IDevID due to the difficulty of aligning current pledge manufacturing with software
releases and development; thus, as a final fallback, the registrar MAY be manually configured or
distributed with a MASA URL for each manufacturer. Note that the registrar can only select the
configured MASA URL based on the trust anchor -- so manufacturers can only leverage this
approach if they ensure a single MASA URL works for all pledges associated with each trust
anchor.

3. Voucher-Request Artifact

Voucher-requests are how vouchers are requested. The semantics of the voucher-request are
described below, in the YANG module.

A pledge forms the "pledge voucher-request", signs it with its IDevID, and submits it to the
registrar.

In turn, the registrar forms the "registrar voucher-request”, signs it with its registrar key pair,
and submits it to the MASA.

The "proximity-registrar-cert" leaf is used in the pledge voucher-requests. This provides a
method for the pledge to assert the registrar's proximity.

This network proximity results from the following properties in the ACP context: the pledge is
connected to the Join Proxy (Section 4) using a link-local IPv6 connection. While the Join Proxy
does not participate in any meaningful sense in the cryptography of the TLS connection (such as
via a Channel Binding), the registrar can observe that the connection is via the private ACP (ULA)
address of the Join Proxy, and it cannot come from outside the ACP. The pledge must therefore be
at most one IPv6 link-local hop away from an existing node on the ACP.

Other users of BRSKI will need to define other kinds of assertions if the network proximity
described above does not match their needs.

The "prior-signed-voucher-request" leaf is used in registrar voucher-requests. If present, it is the
signed pledge voucher-request artifact. This provides a method for the registrar to forward the
pledge's signed request to the MASA. This completes transmission of the signed proximity-
registrar-cert leaf.

Unless otherwise signaled (outside the voucher-request artifact), the signing structure is as

defined for vouchers; see [RFC8366].

3.1. Nonceless Voucher-Requests

A registrar MAY also retrieve nonceless vouchers by sending nonceless voucher-requests to the
MASA in order to obtain vouchers for use when the registrar does not have connectivity to the
MASA. No prior-signed-voucher-request leaf would be included. The registrar will also need to

Pritikin, et al. Standards Track Page 24

RFC 8995 BRSKI May 2021

know the serial number of the pledge. This document does not provide a mechanism for the
registrar to learn that in an automated fashion. Typically, this will be done via the scanning of a
bar code or QR code on packaging, or via some sales channel integration.

3.2. Tree Diagram

The following tree diagram illustrates a high-level view of a voucher-request document. The
voucher-request builds upon the voucher artifact described in [RFC8366]. The tree diagram is
described in [RFC8340]. Each node in the diagram is fully described by the YANG module in
Section 3.4. Please review the YANG module for a detailed description of the voucher-request
format.

module: ietf-voucher-request

grouping voucher-request-grouping
+-- voucher

+-- created-on? yang:date-and-time
+-- expires-on? yang:date-and-time
+-- assertion? enumeration

+-- serial-number string

+-- idevid-issuer? binary

+-- pinned-domain-cert? binary

+-- domain-cert-revocation-checks? boolean

+-- nonce? binary

+-- last-renewal-date? yang:date-and-time
+-- prior-signed-voucher-request? binary

+-- proximity-registrar-cert? binary

Figure 5: YANG Tree Diagram for a Voucher-Request

3.3. Examples

This section provides voucher-request examples for illustration purposes. These examples show
JSON prior to CMS wrapping. JSON encoding rules specify that any binary content be base64
encoded ([RFC4648], Section 4). The contents of the (base64) encoded certificates have been
elided to save space. For detailed examples, see Appendix C.2. These examples conform to the
encoding rules defined in [RFC7951].

Example (1): The following example illustrates a pledge voucher-request. The assertion leaf is
indicated as "proximity", and the registrar's TLS server certificate is included in the
proximity-registrar-cert leaf. See Section 5.2.

Pritikin, et al. Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc4648#section-4

RFC 8995 BRSKI May 2021

"ietf-voucher-request:voucher": {
"assertion": "proximity",
"nonce": "62a2e7693d82fcda2624de58fb6722e5",
"serial-number" : "JADA123456789",
“created-on": "2017-01-01T00:00:00.0007",
"proximity-registrar-cert": "base64encodedvalue=="

Figure 6: JSON Representation of an Example Voucher-Request

Example (2): The following example illustrates a registrar voucher-request. The prior-signed-
voucher-request leaf is populated with the pledge's voucher-request (such as the prior
example). The pledge's voucher-request is a binary CMS-signed object. In the JSON
encoding used here, it must be base64 encoded. The nonce and assertion have been
carried forward from the pledge request to the registrar request. The serial-number is
extracted from the pledge's Client Certificate from the TLS connection. See Section 5.5.

{
"ietf-voucher-request:voucher": {
"assertion" : "proximity",
"nonce": "62a2e7693d82fcda2624de58fb6722e5",
"created-on": "2017-01-01T00:00:02.0007",
"idevid-issuer": "base64encodedvalue==",
"serial-number": "JADA123456789",
"prior-signed-voucher-request”: "base64encodedvalue=="
}
}

Figure 7: JSON Representation of an Example Prior-Signed Voucher-Request

Example (3): The following example illustrates a registrar voucher-request. The prior-signed-
voucher-request leaf is not populated with the pledge's voucher-request nor is the nonce
leaf. This form might be used by a registrar requesting a voucher when the pledge cannot
communicate with the registrar (such as when it is powered down or still in packaging)
and therefore cannot submit a nonce. This scenario is most useful when the registrar is
aware that it will not be able to reach the MASA during deployment. See Section 5.5.

Pritikin, et al. Standards Track Page 26

RFC 8995 BRSKI

{
"ietf-voucher-request:voucher": {
"created-on": "2017-01-01T00:00:02.000Z",
"idevid-issuer": "base64encodedvalue==",
"serial-number": "JADA123456789"
}
}

Figure 8: JSON Representation of an Offline Voucher-Request

3.4. YANG Module

Following is a YANG module [RFC7950] that formally extends a voucher [RFC8366] into a
voucher-request. This YANG module references [ITU.X690].

Pritikin, et al. Standards Track

May 2021

Page 27

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 28

RFC 8995 BRSKI May 2021

<CODE BEGINS> file "ietf-voucher-request@2021-05-20.yang"

module ietf-voucher-request {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
prefix vcr;

import ietf-restconf {
prefix rc;
description
"This import statement is only present to access
the yang-data extension defined in RFC 8640.";
reference
"RFC 8040: RESTCONF Protocol";

import ietf-voucher {
prefix vch;
description
"This module defines the format for a voucher,
which is produced by a pledge's manufacturer or
delegate (MASA) to securely assign a pledge to
an 'owner', so that the pledge may establish a secure
connection to the owner's network infrastructure."”;
reference
"RFC 8366: A Voucher Artifact for
Bootstrapping Protocols";

}
organization
"IETF ANIMA Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/anima/>
WG List: <mailto:anima@ietf.org>
Author: Kent Watsen
<mailto:kent+ietf@watsen.net>
Author: Michael H. Behringer
<mailto:Michael.H.Behringer@gmail.com>
Author: Toerless Eckert
<mailto:tte+ietf@cs.fau.de>
Author: Max Pritikin
<mailto:pritikin@cisco.com>
Author: Michael Richardson
<mailto:mcr+ietf@sandelman.ca>";
description

"This module defines the format for a voucher-request.
It is a superset of the voucher itself.

It provides content to the MASA for consideration
during a voucher-request.

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
"MAY', and 'OPTIONAL' in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.

Copyright (c) 20621 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Pritikin, et al. Standards Track Page 29

RFC 8995 BRSKI May 2021

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC 8995; see the
RFC itself for full legal notices.";

revision 2021-05-20 {

description
“"Initial version";

reference
"RFC 8995: Bootstrapping Remote Secure Key Infrastructure
(BRSKI)";

// Top-level statement

rc:yang-data voucher-request-artifact {
uses voucher-request-grouping;

}

// Grouping defined for future usage

grouping voucher-request-grouping {
description
"Grouping to allow reuse/extensions in future work.";
uses vch:voucher-artifact-grouping {
refine "voucher/created-on" {
mandatory false;
}
refine "voucher/pinned-domain-cert" {
mandatory false;
description
"A pinned-domain-cert field is not valid in a
voucher-request, and any occurrence MUST be ignored.";

}
refine "voucher/last-renewal-date" {
description
"A last-renewal-date field is not valid in a
voucher-request, and any occurrence MUST be ignored.";
}
refine "voucher/domain-cert-revocation-checks" {
description
"The domain-cert-revocation-checks field is not valid in a
voucher-request, and any occurrence MUST be ignored.";
}

refine "voucher/assertion” {
mandatory false;
description
"Any assertion included in registrar voucher-requests
SHOULD be ignored by the MASA.";
}
augment "voucher" {
description
"Adds leaf nodes appropriate for requesting vouchers.";

Pritikin, et al. Standards Track Page 30

RFC 8995

BRSKI May 2021

leaf prior-signed-voucher-request {

}

type binary;
description

"If it is necessary to change a voucher, or re-sign and
forward a voucher that was previously provided along a
protocol path, then the previously signed voucher SHOULD
be included in this field.

For example, a pledge might sign a voucher-request
with a proximity-registrar-cert, and the registrar
then includes it as the prior-signed-voucher-request
field. This is a simple mechanism for a chain of
trusted parties to change a voucher-request, while
maintaining the prior signature information.

The registrar and MASA MAY examine the prior-signed
voucher information for the

purposes of policy decisions. For example, this
information could be useful to a MASA to determine
that both the pledge and registrar agree on proximity
assertions. The MASA SHOULD remove all
prior-signed-voucher-request information when

signing a voucher for imprinting so as to minimize
the final voucher size.";

leaf proximity-registrar-cert {

<CODE ENDS>

Pritikin, et al.

type binary;
description

"An X.509 v3 certificate structure, as specified by
RFC 5280, Section 4, encoded using the ASN.1
distinguished encoding rules (DER), as specified
in ITU X.690.

The first certificate in the registrar TLS server
certificate_list sequence (the end-entity TLS
certificate; see RFC 8446) presented by the registrar
to the pledge. This MUST be populated in a pledge's
voucher-request when a proximity assertion is
requested.";

reference

"ITU X.690: Information Technology - ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)

RFC 5280: Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL)
Profile
RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3";

Standards Track Page 31

RFC 8995 BRSKI May 2021
Figure 9: YANG Module for Voucher-Request

4. Proxying Details (Pledge -- Proxy -- Registrar)

This section is normative for uses with an ANIMA ACP. The use of the GRASP mechanism is part
of the ACP. Other users of BRSKI will need to define an equivalent proxy mechanism and an
equivalent mechanism to configure the proxy.

The role of the proxy is to facilitate communications. The proxy forwards packets between the
pledge and a registrar that has been provisioned to the proxy via full GRASP ACP discovery.

This section defines a stateful proxy mechanism that is referred to as a "circuit" proxy. This is a
form of Application Level Gateway (see [RFC2663], Section 2.9).

The proxy does not terminate the TLS handshake: it passes streams of bytes onward without
examination. A proxy MUST NOT assume any specific TLS version. Please see [RFC8446], Section
9.3 for details on TLS invariants.

A registrar can directly provide the proxy announcements described below, in which case the
announced port can point directly to the registrar itself. In this scenario, the pledge is unaware
that there is no proxying occurring. This is useful for registrars that are servicing pledges on
directly connected networks.

As a result of the proxy discovery process in Section 4.1.1, the port number exposed by the proxy
does not need to be well known or require an IANA allocation.

During the discovery of the registrar by the Join Proxy, the Join Proxy will also learn which kinds
of proxy mechanisms are available. This will allow the Join Proxy to use the lowest impact
mechanism that the Join Proxy and registrar have in common.

In order to permit the proxy functionality to be implemented on the maximum variety of
devices, the chosen mechanism should use the minimum amount of state on the proxy device.
While many devices in the ANIMA target space will be rather large routers, the proxy function is
likely to be implemented in the control-plane CPU of such a device, with available capabilities for
the proxy function similar to many class 2 IoT devices.

The document [ANIMA-STATE] provides a more extensive analysis and background of the

alternative proxy methods.

4.1. Pledge Discovery of Proxy

The result of discovery is a logical communication with a registrar, through a proxy. The proxy is
transparent to the pledge. The communication between the pledge and Join Proxy is over IPv6
link-local addresses.

Pritikin, et al. Standards Track Page 32

https://www.rfc-editor.org/rfc/rfc2663#section-2.9
https://www.rfc-editor.org/rfc/rfc8446#section-9.3
https://www.rfc-editor.org/rfc/rfc8446#section-9.3

RFC 8995 BRSKI May 2021

To discover the proxy, the pledge performs the following actions:

1. MUST: Obtain a local address using IPv6 methods as described in "IPv6 Stateless Address
Autoconfiguration” [RFC4862]. Use of temporary addresses [RFC8981] is encouraged. To limit
pervasive monitoring [RFC7258], a new temporary address MAY use a short lifetime (that is,
set TEMP_PREFERRED_LIFETIME to be short). Pledges will generally prefer use of IPv6 link-
local addresses, and discovery of the proxy will be by link-local mechanisms. IPv4 methods
are described in Appendix A.

2. MUST: Listen for GRASP M_FLOOD [RFC8990] announcements of the objective: "AN_Proxy".
See Section 4.1.1 for the details of the objective. The pledge MAY listen concurrently for other
sources of information; see Appendix B.

Once a proxy is discovered, the pledge communicates with a registrar through the proxy using
the bootstrapping protocol defined in Section 5.

While the GRASP M_FLOOD mechanism is passive for the pledge, the non-normative other
methods (mDNS and IPv4 methods) described in Appendix B are active. The pledge SHOULD run
those methods in parallel with listening for the M_FLOOD. The active methods SHOULD back off
by doubling to a maximum of one hour to avoid overloading the network with discovery
attempts. Detection of physical link status change (Ethernet carrier, for instance) SHOULD reset
the back-off timers.

The pledge could discover more than one proxy on a given physical interface. The pledge can
have a multitude of physical interfaces as well: a Layer 2/3 Ethernet switch may have hundreds
of physical ports.

Each possible proxy offer SHOULD be attempted up to the point where a valid voucher is
received: while there are many ways in which the attempt may fail, it does not succeed until the
voucher has been validated.

The connection attempts via a single proxy SHOULD exponentially back off to a maximum of one
hour to avoid overloading the network infrastructure. The back-off timer for each MUST be
independent of other connection attempts.

Connection attempts SHOULD be run in parallel to avoid head-of-queue problems wherein an
attacker running a fake proxy or registrar could intentionally perform protocol actions slowly.
Connection attempts to different proxies SHOULD be sent with an interval of 3 to 5s. The pledge
SHOULD continue to listen for additional GRASP M_FLOOD messages during the connection
attempts.

Each connection attempt through a distinct Join Proxy MUST have a unique nonce in the
voucher-request.

Once a connection to a registrar is established (e.g., establishment of a TLS session key), there are
expectations of more timely responses; see Section 5.2.

Pritikin, et al. Standards Track Page 33

RFC 8995 BRSKI

May 2021

Once all discovered services are attempted (assuming that none succeeded), the device MUST
return to listening for GRASP M_FLOOD. It SHOULD periodically retry any manufacturer-specific

mechanisms. The pledge MAY prioritize selection order as appropriate for the anticipated

environment.

4.1.1. Proxy GRASP Announcements

A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself. This announcement can

be within the same message as the ACP announcement detailed in [RFC8994].

The formal Concise Data Definition Language (CDDL) [RFC8610] definition is:

<CODE BEGINS> file "proxygrasp.cddl”

flood-message = [M_FLOOD, session-id, initiator, ttl,
+[objective, (locator-option / [])]]

objective = ["AN_Proxy", objective-flags, loop-count,
objective-value]

ttl = 180000 ; 180,000 ms (3 minutes)
initiator = ACP address to contact registrar
objective-flags sync-only ; as in the GRASP spec

sync-only 4 ; M_FLOOD only requires

; synchronization
loop-count = 1 ; one hop only
objective-value = any ; none

[O_IPv6_LOCATOR, ipv6-address,
transport-proto, port-number]
the v6 LL of the Proxy

locator-option

ipv6-address

Stransport-proto /= IPPROTO_TCP ; note that this can be any value
; from the IANA protocol registry,
; as per RFC 8990, Section 2.9.5.1,

; Note 3.
port-number = selected by Proxy

<CODE ENDS>

Figure 10: CDDL Definition of Proxy Discovery Message

Here is an example M_FLOOD announcing a proxy at fe80::1, on TCP port 4443.

[M_FLOOD, 12348815, h'feB800000000000000000000000000001', 180000,
[["AN_Proxy", 4, 1, ""],
[0_IPv6_LOCATOR,

h' fe800000000000000000000000000001', IPPROTO_TCP, 4443]]]

Figure 11: Example of Proxy Discovery Message

On a small network, the registrar MAY include the GRASP M_FLOOD announcements to locally

connected networks.

Pritikin, et al. Standards Track

Page 34

RFC 8995 BRSKI May 2021

The $transport-proto above indicates the method that the pledge-proxy-registrar will use. The
TCP method described here is mandatory, and other proxy methods, such as CoAP methods not
defined in this document, are optional. Other methods MUST NOT be enabled unless the Join
Registrar ASA indicates support for them in its own announcement.

4.2. CoAP Connection to Registrar

The use of CoAP to connect from pledge to registrar is out of scope for this document and is
described in future work. See [ANIMA-CONSTRAINED-VOUCHER].

4.3. Proxy Discovery and Communication of Registrar

The registrar SHOULD announce itself so that proxies can find it and determine what kind of
connections can be terminated.

The registrar announces itself using GRASP M_FLOOD messages, with the "AN_join_registrar"
objective, within the ACP instance. A registrar may announce any convenient port number,
including use of stock port 443. ANI proxies MUST support GRASP discovery of registrars.

The M_FLOOD is formatted as follows:

[M_FLOOD, 51804321, h'fda379a676ec00000200000064000001', 180000,
[["AN_join_registrar", 4, 255, "EST-TLS"],
[0O_IPv6_LOCATOR,
h'fda379a6f6ee00000200000064000001', IPPROTO_TCP, 8443]]]

Figure 12: An Example of a Registrar Announcement Message

The formal CDDL definition is:

<CODE BEGINS> file "jrcgrasp.cddl”

flood-message = [M_FLOOD, session-id, initiator, ttl,
+[objective, (locator-option / [])]]

objective = ["AN_join_registrar", objective-flags, loop-count,
objective-value]

initiator = ACP address to contact registrar
objective-flags = sync-only ; as in the GRASP spec
sync-only = 4 ; M_FLOOD only requires
; synchronization
loop-count 255 ; mandatory maximum

objective-value

text ; name of the (list of) supported
; protocols: "EST-TLS" for RFC 70630.
<CODE ENDS>

Figure 13: CDDL Definition for Registrar Announcement Message

Pritikin, et al. Standards Track Page 35

RFC 8995 BRSKI May 2021

The M_FLOOD message MUST be sent periodically. The default period SHOULD be 60 seconds, and
the value SHOULD be operator configurable but SHOULD NOT be smaller than 60 seconds. The
frequency of sending MUST be such that the aggregate amount of periodic M_FLOODs from all
flooding sources causes only negligible traffic across the ACP.

Here are some examples of locators for illustrative purposes. Only the first one ($transport-
protocol = 6, TCP) is defined in this document and is mandatory to implement.

locator1l = [O_IPv6_LOCATOR, fd45:1345::6789, 6, 443]
locator2 = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
locator3 = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

A protocol of 6 indicates that TCP proxying on the indicated port is desired.

Registrars MUST announce the set of protocols that they support, and they MUST support TCP
traffic.

Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

Registrars MUST support the ANI TLS Circuit Proxy and therefore BRSKI across HTTPS/TLS native
across the ACP.

In the ANI, the ACP-secured instance of GRASP [RFC8990] MUST be used for discovery of ANI
registrar ACP addresses and ports by ANI proxies. Therefore, the TCP leg of the proxy connection
between the ANI proxy and ANI registrar also runs across the ACP.

5. Protocol Details (Pledge -- Registrar -- MASA)

The pledge MUST initiate BRSKI after boot if it is unconfigured. The pledge MUST NOT
automatically initiate BRSKI if it has been configured or is in the process of being configured.

BRSKI is described as extensions to EST [RFC7030]. The goal of these extensions is to reduce the
number of TLS connections and crypto operations required on the pledge. The registrar
implements the BRSKI REST interface within the "/well-known/brski" URI tree and implements
the existing EST URIs as described in EST [RFC7030], Section 3.2.2. The communication channel
between the pledge and the registrar is referred to as "BRSKI-EST" (see Figure 1).

The communication channel between the registrar and MASA is a new communication channel,
similar to EST, within the newly registered "/.well-known/brski" tree. For clarity, this channel is
referred to as "BRSKI-MASA" (see Figure 1).

The MASA URI is "https://" authority "/well-known/brski".

BRSKI uses existing CMS message formats for existing EST operations. BRSKI uses JSON
[RFC8259] for all new operations defined here and for voucher formats. In all places where a
binary value must be carried in a JSON string, a base64 format ([RFC4648], Section 4) is to be
used, as per [RFC7951], Section 6.6.

Pritikin, et al. Standards Track Page 36

https://www.rfc-editor.org/rfc/rfc7030#section-3.2.2
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc7951#section-6.6

RFC 8995 BRSKI May 2021

While EST ([RFC7030], Section 3.2) does not insist upon use of HTTP persistent connections
([RFC7230], Section 6.3), BRSKI-EST connections SHOULD use persistent connections. The
intention of this guidance is to ensure the provisional TLS state occurs only once, and that the
subsequent resolution of the provision state is not subject to a Man-in-the-Middle (MITM) attack
during a critical phase.

If non-persistent connections are used, then both the pledge and the registrar MUST remember
the certificates that have been seen and also sent for the first connection. They MUST check each
subsequent connection for the same certificates, and each end MUST use the same certificates as
well. This places a difficult restriction on rolling certificates on the registrar.

Summarized automation extensions for the BRSKI-EST flow are:

* The pledge either attempts concurrent connections via each discovered proxy or times out
quickly and tries connections in series, as explained at the end of Section 5.1.

* The pledge provisionally accepts the registrar certificate during the TLS handshake as
detailed in Section 5.1.

* The pledge requests a voucher using the new REST calls described below. This voucher is
then validated.

» The pledge completes authentication of the server certificate as detailed in Section 5.6.1. This
moves the BRSKI-EST TLS connection out of the provisional state.

* Mandatory bootstrap steps conclude with voucher status telemetry (see Section 5.7).
The BRSKI-EST TLS connection can now be used for EST enrollment.
The extensions for a registrar (equivalent to an EST server) are:

* Client authentication is automated using IDevID as per the EST certificate-based client
authentication. The subject field's DN encoding MUST include the "serialNumber" attribute
with the device's unique serial number as explained in Section 2.3.1.

* The registrar requests and validates the voucher from the MASA.

* The registrar forwards the voucher to the pledge when requested.

* The registrar performs log verifications (described in Section 5.8.3) in addition to local
authorization checks before accepting optional pledge device enrollment requests.

5.1. BRSKI-EST TLS Establishment Details

The pledge establishes the TLS connection with the registrar through the Circuit Proxy (see
Section 4), but the TLS handshake is with the registrar. The BRSKI-EST pledge is the TLS client,
and the BRSKI-EST registrar is the TLS server. All security associations established are between
the pledge and the registrar regardless of proxy operations.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is REQUIRED on the pledge side. TLS 1.3
(or newer) SHOULD be available on the registrar server interface, and the registrar client
interface, but TLS 1.2 MAY be used. TLS 1.3 (or newer) SHOULD be available on the MASA server
interface, but TLS 1.2 MAY be used.

Pritikin, et al. Standards Track Page 37

https://www.rfc-editor.org/rfc/rfc7030#section-3.2
https://www.rfc-editor.org/rfc/rfc7230#section-6.3

RFC 8995 BRSKI May 2021

Establishment of the BRSKI-EST TLS connection is as specified in "Bootstrap Distribution of CA
Certificates" (Section 4.1.1) of [RFC7030], wherein the client is authenticated with the IDevID
certificate, and the EST server (the registrar) is provisionally authenticated with an unverified
server certificate. Configuration or distribution of the trust anchor database used for validating
the IDevID certificate is out of scope of this specification. Note that the trust anchors in / excluded
from the database will affect which manufacturers' devices are acceptable to the registrar as
pledges and can also be used to limit the set of MASAs that are trusted for enrollment.

The signature in the certificate MUST be validated even if a signing key cannot (yet) be validated.
The certificate (or chain) MUST be retained for later validation.

A self-signed certificate for the registrar is acceptable as the voucher can validate it upon
successful enrollment.

The pledge performs input validation of all data received until a voucher is verified as specified
in Section 5.6.1 and the TLS connection leaves the provisional state. Until these operations are
complete, the pledge could be communicating with an attacker.

The pledge code needs to be written with the assumption that all data is being transmitted at this
point to an unauthenticated peer, and that received data, while inside a TLS connection, MUST be
considered untrusted. This particularly applies to HTTP headers and CMS structures that make
up the voucher.

A pledge that can connect to multiple registrars concurrently SHOULD do so. Some devices may
be unable to do so for lack of threading, or resource issues. Concurrent connections defeat
attempts by a malicious proxy from causing a TCP Slowloris-like attack (see [slowloris]).

A pledge that cannot maintain as many connections as there are eligible proxies will need to
rotate among the various choices, terminating connections that do not appear to be making
progress. If no connection is making progress after 5 seconds, then the pledge SHOULD drop the
oldest connection and go on to a different proxy: the proxy that has been communicated with
least recently. If there were no other proxies discovered, the pledge MAY continue to wait, as long
as it is concurrently listening for new proxy announcements.

5.2. Pledge Requests Voucher from the Registrar

When the pledge bootstraps, it makes a request for a voucher from a registrar.

This is done with an HTTPS POST using the operation path value of "/.well-known/brski/
requestvoucher".

The pledge voucher-request Content-Type is as follows.

application/voucher-cms+json:

Pritikin, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc7030#section-4.1.1

RFC 8995 BRSKI May 2021

[RFC8366] defines a "YANG-defined JSON document that has been signed using a
Cryptographic Message Syntax (CMS) structure”, and the voucher-request described in Section
3 is created in the same way. The media type is the same as defined in [RFC8366]. This is also
used for the pledge voucher-request. The pledge MUST sign the request using the credentials
in Section 2.3.

Registrar implementations SHOULD anticipate future media types but, of course, will simply fail
the request if those types are not yet known.

The pledge SHOULD include an "Accept" header field (see [RFC7231], Section 5.3.2) indicating the
acceptable media type for the voucher response. The "application/voucher-cms+json" media type
is defined in [RFC8366], but constrained voucher formats are expected in the future. Registrars
and MASA are expected to be flexible in what they accept.

The pledge populates the voucher-request fields as follows:

created-on: Pledges that have a real-time clock are RECOMMENDED to populate this field with
the current date and time in yang:date-and-time format. This provides additional information
to the MASA. Pledges that have no real-time clocks MAY omit this field.

nonce: The pledge voucher-request MUST contain a cryptographically strong random or
pseudo-random number nonce (see [RFC4086], Section 6.2). As the nonce is usually generated
very early in the boot sequence, there is a concern that the same nonce might be generated
across multiple boots, or after a factory reset. Different nonces MUST be generated for each
bootstrapping attempt, whether in series or concurrently. The freshness of this nonce
mitigates against the lack of a real-time clock as explained in Section 2.6.1.

assertion: The pledge indicates support for the mechanism described in this document, by
putting the value "proximity" in the voucher-request, and MUST include the proximity-
registrar-cert field (below).

proximity-registrar-cert: In a pledge voucher-request, this is the first certificate in the TLS
server "certificate_list" sequence (see [RFC8446], Section 4.4.2) presented by the registrar to
the pledge. That is, it is the end-entity certificate. This MUST be populated in a pledge voucher-
request.

serial-number: The serial number of the pledge is included in the voucher-request from the
pledge. This value is included as a sanity check only, but it is not to be forwarded by the
registrar as described in Section 5.5.

All other fields MAY be omitted in the pledge voucher-request.
See an example JSON payload of a pledge voucher-request in Section 3.3, Example 1.

The registrar confirms that the assertion is "proximity" and that pinned proximity-registrar-cert
is the registrar's certificate. If this validation fails, then there is an on-path attacker (MITM), and
the connection MUST be closed after the returning of an HTTP 401 error code.

Pritikin, et al. Standards Track Page 39

https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2
https://www.rfc-editor.org/rfc/rfc4086#section-6.2
https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2

RFC 8995 BRSKI May 2021

5.3. Registrar Authorization of Pledge

In a fully automated network, all devices must be securely identified and authorized to join the
domain.

A registrar accepts or declines a request to join the domain, based on the authenticated identity
presented. For different networks, examples of automated acceptance may include the allowance
of:

* any device of a specific type (as determined by the X.509 IDevID),
* any device from a specific vendor (as determined by the X.509 IDevID),

* a specific device from a vendor (as determined by the X.509 IDevID) against a domain
acceptlist. (The mechanism for checking a shared acceptlist potentially used by multiple
registrars is out of scope.)

If validation fails, the registrar SHOULD respond with the HTTP 404 error code. If the voucher-
request is in an unknown format, then an HTTP 406 error code is more appropriate. A situation
that could be resolved with administrative action (such as adding a vendor to an acceptlist) MAY
be responded to with a 403 HTTP error code.

If authorization is successful, the registrar obtains a voucher from the MASA service (see Section
5.5) and returns that MASA-signed voucher to the pledge as described in Section 5.6.

5.4. BRSKI-MASA TLS Establishment Details

The BRSKI-MASA TLS connection is a "normal" TLS connection appropriate for HTTPS REST
interfaces. The registrar initiates the connection and uses the MASA URL that is obtained as
described in Section 2.8. The mechanisms in [RFC6125] SHOULD be used in authentication of the
MASA using a DNS-ID that matches that which is found in the IDevID. Registrars MAY include a
mechanism to override the MASA URL on a manufacturer-by-manufacturer basis, and within
that override, it is appropriate to provide alternate anchors. This will typically be used by some
vendors to establish explicit (or private) trust anchors for validating their MASA that is part of a
sales channel integration.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is REQUIRED. TLS 1.3 (or newer)
SHOULD be available.

As described in [RFC7030], the MASA and the registrars SHOULD be prepared to support TLS
Client Certificate authentication and/or HTTP Basic, Digest, or Salted Challenge Response
Authentication Mechanism (SCRAM) authentication. This connection MAY also have no client
authentication at all.

Registrars SHOULD permit trust anchors to be preconfigured on a per-vendor (MASA) basis.
Registrars SHOULD include the ability to configure a TLS Client Certificate on a per-MASA basis,
or to use no Client Certificate. Registrars SHOULD also permit HTTP Basic and Digest
authentication to be configured.

Pritikin, et al. Standards Track Page 40

RFC 8995 BRSKI May 2021

The authentication of the BRSKI-MASA connection does not change the voucher-request process,
as voucher-requests are already signed by the registrar. Instead, this authentication provides
access control to the audit-log as described in Section 5.8.

Implementers are advised that contacting the MASA establishes a secured API connection with a
web service, and that there are a number of authentication models being explored within the
industry. Registrars are RECOMMENDED to fail gracefully and generate useful administrative
notifications or logs in the advent of unexpected HTTP 401 (Unauthorized) responses from the
MASA.

5.4.1. MASA Authentication of Customer Registrar

Providing per-customer options requires the customer's registrar to be uniquely identified. This
can be done by any stateless method that HTTPS supports such as HTTP Basic or Digest
authentication (that is using a password), but the use of TLS Client Certificate authentication is
RECOMMENDED.

Stateful methods involving API tokens, or HTTP Cookies, are not recommended.

It is expected that the setup and configuration of per-customer Client Certificates is done as part
of a sales ordering process.

The use of public PKI (i.e., WebPKI) end-entity certificates to identify the registrar is reasonable,
and if done universally, this would permit a MASA to identify a customer's registrar simply by a
Fully Qualified Domain Name (FQDN).

The use of DANE records in DNSSEC-signed zones would also permit use of a FQDN to identify
customer registrars.

A third (and simplest, but least flexible) mechanism would be for the MASA to simply store the
registrar's certificate pinned in a database.

A MASA without any supply-chain integration can simply accept registrars without any
authentication or on a blind TOFU basis as described in Section 7.4.2.

This document does not make a specific recommendation on how the MASA authenticates the
registrar as there are likely different tradeoffs in different environments and product values.
Even within the ANIMA ACP applicability, there is a significant difference between supply-chain
logistics for $100 CPE devices and $100,000 core routers.

5.5. Registrar Requests Voucher from MASA

When a registrar receives a pledge voucher-request, it in turn submits a registrar voucher-
request to the MASA service via an HTTPS interface [RFC7231].

This is done with an HTTP POST using the operation path value of "/well-known/brski/
requestvoucher".

Pritikin, et al. Standards Track Page 41

RFC 8995 BRSKI May 2021

The voucher media type "application/voucher-cms+json" is defined in [RFC8366] and is also used
for the registrar voucher-request. It is a JSON document that has been signed using a CMS
structure. The registrar MUST sign the registrar voucher-request.

MASA implementations SHOULD anticipate future media ntypes but, of course, will simply fail
the request if those types are not yet known.

The voucher-request CMS object includes some number of certificates that are input to the MASA
as it populates the pinned-domain-cert. As [RFC8366] is quite flexible in what may be put into the
pinned-domain-cert, the MASA needs some signal as to what certificate would be effective to
populate the field with: it may range from the end-entity certificate that the registrar uses to the
entire private Enterprise CA certificate. More-specific certificates result in a tighter binding of the
voucher to the domain, while less-specific certificates result in more flexibility in how the
domain is represented by certificates.

A registrar that is seeking a nonceless voucher for later offline use benefits from a less-specific
certificate, as it permits the actual key pair used by a future registrar to be determined by the
pinned CA.

In some cases, a less-specific certificate, such as a public WebPKI CA, could be too open and could
permit any entity issued a certificate by that authority to assume ownership of a device that has
a voucher pinned. Future work may provide a solution to pin both a certificate and a name that
would reduce such risk of malicious ownership assertions.

The registrar SHOULD request a voucher with the most specificity consistent with the mode that
it is operating in. In order to do this, when the registrar prepares the CMS structure for the
signed voucher-request, it SHOULD include only certificates that are a part of the chain that it
wishes the MASA to pin. This MAY be as small as only the end-entity certificate (with id-kp-cmmcRA
set) that it uses as its TLS server certificate, or it MAY be the entire chain, including the domain
CA.

The registrar SHOULD include an "Accept" header field (see [RFC7231], Section 5.3.2) indicating
the response media types that are acceptable. This list SHOULD be the entire list presented to the
registrar in the pledge's original request (see Section 5.2), but it MAY be a subset. The MASA is
expected to be flexible in what it accepts.

The registrar populates the voucher-request fields as follows:

created-on: The registrar SHOULD populate this field with the current date and time when the
voucher-request is formed. This field provides additional information to the MASA.

nonce: This value, if present, is copied from the pledge voucher-request. The registrar voucher-
request MAY omit the nonce as per Section 3.1.

serial-number: The serial number of the pledge the registrar would like a voucher for. The
registrar determines this value by parsing the authenticated pledge IDevID certificate; see
Section 2.3. The registrar MUST verify that the serial-number field it parsed matches the

Pritikin, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2

RFC 8995 BRSKI May 2021

serial-number field the pledge provided in its voucher-request. This provides a sanity check
useful for detecting error conditions and logging. The registrar MUST NOT simply copy the
serial-number field from a pledge voucher-request as that field is claimed but not certified.

idevid-issuer: The Issuer value from the pledge IDevID certificate is included to ensure unique
interpretation of the serial-number. In the case of a nonceless (offline) voucher-request, an
appropriate value needs to be configured from the same out-of-band source as the serial-
number.

prior-signed-voucher-request: The signed pledge voucher-request SHOULD be included in the
registrar voucher-request. The entire CMS-signed structure is to be included and base64
encoded for transport in the JSON structure.

A nonceless registrar voucher-request MAY be submitted to the MASA. Doing so allows the
registrar to request a voucher when the pledge is offline, or when the registrar anticipates not
being able to connect to the MASA while the pledge is being deployed. Some use cases require the
registrar to learn the appropriate IDevID serialNumber field and appropriate "Accept" header
field values from the physical device labeling or from the sales channel (which is out of scope for
this document).

All other fields MAY be omitted in the registrar voucher-request.
The proximity-registrar-cert field MUST NOT be present in the registrar voucher-request.
See example JSON payloads of registrar voucher-requests in Section 3.3, Examples 2 through 4.

The MASA verifies that the registrar voucher-request is internally consistent but does not
necessarily authenticate the registrar certificate since the registrar MAY be unknown to the
MASA in advance. The MASA performs the actions and validation checks described in the
following subsections before issuing a voucher.

5.5.1. MASA Renewal of Expired Vouchers

As described in [RFC8366], vouchers are normally short lived to avoid revocation issues. If the
request is for a previous (expired) voucher using the same registrar (that is, a registrar with the
same domain CA), then the request for a renewed voucher SHOULD be automatically authorized.
The MASA has sufficient information to determine this by examining the request, the registrar
authentication, and the existing audit-log. The issuance of a renewed voucher is logged as
detailed in Section 5.6.

To inform the MASA that existing vouchers are not to be renewed, one can update or revoke the
registrar credentials used to authorize the request (see Sections 5.5.4 and 5.5.3). More flexible
methods will likely involve sales channel integration and authorizations (details are out of scope
of this document).

5.5.2. MASA Pinning of Registrar

A certificate chain is extracted from the registrar's signed CMS container. This chain may be as
short as a single end-entity certificate, up to the entire registrar certificate chain, including the
domain CA certificate, as specified in Section 5.5.

Pritikin, et al. Standards Track Page 43

RFC 8995 BRSKI May 2021

If the domain's CA is unknown to the MASA, then it is considered a temporary trust anchor for
the rest of the steps in this section. The intention is not to authenticate the message as having
come from a fully validated origin but to establish the consistency of the domain PKIL

The MASA MAY use the certificate in the chain that is farthest from the end-entity certificate of
the registrar, as determined by MASA policy. A MASA MAY have a local policy in which it only
pins the end-entity certificate. This is consistent with [RFC8366]. Details of the policy will
typically depend upon the degree of supply-chain integration and the mechanism used by the
registrar to authenticate. Such a policy would also determine how the MASA will respond to a
request for a nonceless voucher.

5.5.3. MASA Check of the Voucher-Request Signature

As described in Section 5.5.2, the MASA has extracted the registrar's domain CA. This is used to
validate the CMS signature [RFC5652] on the voucher-request.

Normal PKIX revocation checking is assumed during voucher-request signature validation. This
CA certificate MAY have Certificate Revocation List (CRL) distribution points or Online Certificate
Status Protocol (OCSP) information [RFC6960]. If they are present, the MASA MUST be able to
reach the relevant servers belonging to the registrar's domain CA to perform the revocation
checks.

The use of OCSP Stapling is preferred.

5.5.4. MASA Verification of the Domain Registrar

The MASA MUST verify that the registrar voucher-request is signed by a registrar. This is
confirmed by verifying that the id-kp-cmcRA extended key usage extension field (as detailed in
EST [RFC7030], Section 3.6.1) exists in the certificate of the entity that signed the registrar
voucher-request. This verification is only a consistency check to ensure that the unauthenticated
domain CA intended the voucher-request signer to be a registrar. Performing this check provides
value to the domain PKI by assuring the domain administrator that the MASA service will only
respect claims from authorized registration authorities of the domain.

Even when a domain CA is authenticated to the MASA, and there is strong sales channel
integration to understand who the legitimate owner is, the above id-kp-cmcRA check prevents
arbitrary end-entity certificates (such as an LDevID certificate) from having vouchers issued
against them.

Other cases of inappropriate voucher issuance are detected by examination of the audit-log.

If a nonceless voucher-request is submitted, the MASA MUST authenticate the registrar either as
described in EST (see Sections 3.2.3 and 3.3.2 of [RFC7030]) or by validating the registrar's
certificate used to sign the registrar voucher-request using a configured trust anchor. Any of
these methods reduce the risk of DDoS attacks and provide an authenticated identity as an input
to sales channel integration and authorizations (details are out of scope of this document).

Pritikin, et al. Standards Track Page 44

https://www.rfc-editor.org/rfc/rfc7030#section-3.6.1
https://www.rfc-editor.org/rfc/rfc7030#section-3.2.3
https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2

RFC 8995 BRSKI May 2021

In the nonced case, validation of the registrar's identity (via TLS Client Certificate or HTTP
authentication) MAY be omitted if the MASA knows that the device policy is to accept audit-only
vouchers.

5.5.5. MASA Verification of the Pledge 'prior-signed-voucher-request'

The MASA MAY verify that the registrar voucher-request includes the prior-signed-voucher-
request field. If so, the prior-signed-voucher-request MUST include a proximity-registrar-cert that
is consistent with the certificate used to sign the registrar voucher-request. Additionally, the
voucher-request serial-number leaf MUST match the pledge serial-number that the MASA
extracts from the signing certificate of the prior-signed-voucher-request. The consistency check
described above entails checking that the proximity-registrar-cert Subject Public Key Info (SPKI)
Fingerprint exists within the registrar voucher-request CMS signature's certificate chain. This is
substantially the same as the pin validation described in [RFC7469], Section 2.6.

If these checks succeed, the MASA updates the voucher and audit-log assertion leafs with the
"proximity" assertion, as defined by [RFC8366], Section 5.3.

5.5.6. MASA Nonce Handling

The MASA does not verify the nonce itself. If the registrar voucher-request contains a nonce, and
the prior-signed-voucher-request exists, then the MASA MUST verify that the nonce is consistent.
(Recall from above that the voucher-request might not contain a nonce; see Sections 5.5 and
5.5.4.)

The MASA populates the audit-log with the nonce that was verified. If a nonceless voucher is
issued, then the audit-log is to be populated with the JSON value "null".

5.6. MASA and Registrar Voucher Response

The MASA voucher response to the registrar is forwarded without changes to the pledge;
therefore, this section applies to both the MASA and the registrar. The HTTP signaling described
applies to both the MASA and registrar responses.

When a voucher-request arrives at the registrar, if it has a cached response from the MASA for
the corresponding registrar voucher-request, that cached response can be used according to local
policy; otherwise, the registrar constructs a new registrar voucher-request and sends it to the
MASA.

Registrar evaluation of the voucher itself is purely for transparency and audit purposes to
further inform log verification (see Section 5.8.3); therefore, a registrar could accept future
voucher formats that are opaque to the registrar.

If the voucher-request is successful, the server (a MASA responding to a registrar or a registrar
responding to a pledge) response MUST contain an HTTP 200 response code. The server MUST
answer with a suitable 4xx or 5xx HTTP [RFC7230] error code when a problem occurs. In this
case, the response data from the MASA MUST be a plain text human-readable (UTF-8) error
message containing explanatory information describing why the request was rejected.

Pritikin, et al. Standards Track Page 45

https://www.rfc-editor.org/rfc/rfc7469#section-2.6
https://www.rfc-editor.org/rfc/rfc8366#section-5.3

RFC 8995 BRSKI May 2021

The registrar MAY respond with an HTTP 202 ("the request has been accepted for processing, but
the processing has not been completed") as described in EST [RFC7030], Section 4.2.3, wherein
the client "MUST wait at least the specified "retry-after” time before repeating the same request”
(also see [RFC7231], Section 6.6.4). The pledge is RECOMMENDED to provide local feedback
(blinked LED, etc.) during this wait cycle if mechanisms for this are available. To prevent an
attacker registrar from significantly delaying bootstrapping, the pledge MUST limit the Retry-
After time to 60 seconds. Ideally, the pledge would keep track of the appropriate Retry-After
header field values for any number of outstanding registrars, but this would involve a state table
on the pledge. Instead, the pledge MAY ignore the exact Retry-After value in favor of a single
hard-coded value (a registrar that is unable to complete the transaction after the first 60 seconds
has another chance a minute later). A pledge SHOULD be willing to maintain a 202 retry-state for
up to 4 days, which is longer than a long weekend, after which time the enrollment attempt fails,
and the pledge returns to Discovery state. This allows time for an alert to get from the registrar to
a human operator who can make a decision as to whether or not to proceed with the enrollment.

A pledge that retries a request after receiving a 202 message MUST resend the same voucher-
request. It MUST NOT sign a new voucher-request each time, and in particular, it MUST NOT
change the nonce value.

In order to avoid infinite redirect loops, which a malicious registrar might do in order to keep the
pledge from discovering the correct registrar, the pledge MUST NOT follow more than one
redirection (3xx code) to another web origin. EST supports redirection but requires user input;
this change allows the pledge to follow a single redirection without a user interaction.

A 403 (Forbidden) response is appropriate if the voucher-request is not signed correctly or is
stale or if the pledge has another outstanding voucher that cannot be overridden.

A 404 (Not Found) response is appropriate when the request is for a device that is not known to
the MASA.

A 406 (Not Acceptable) response is appropriate if a voucher of the desired type or that uses the
desired algorithms (as indicated by the "Accept" header fields and algorithms used in the
signature) cannot be issued as such because the MASA knows the pledge cannot process that
type. The registrar SHOULD use this response if it determines the pledge is unacceptable due to
inventory control, MASA audit-logs, or any other reason.

A 415 (Unsupported Media Type) response is appropriate for a request that has a voucher-
request or "Accept"” value that is not understood.

The voucher response format is as indicated in the submitted "Accept" header fields or based on
the MASA's prior understanding of proper format for this pledge. Only the "application/voucher-
cms+json” media type [RFC8366] is defined at this time. The syntactic details of vouchers are
described in detail in [RFC8366]. Figure 14 shows a sample of the contents of a voucher.

Pritikin, et al. Standards Track Page 46

https://www.rfc-editor.org/rfc/rfc7030#section-4.2.3
https://www.rfc-editor.org/rfc/rfc7231#section-6.6.4

RFC 8995 BRSKI May 2021

{
"ietf-voucher:voucher": {
"nonce": "62a2e7693d82fcda2624de58fb6722e5",
"assertion": "logged",
"pinned-domain-cert": "base64encodedvalue==",
"serial-number": "JADA123456789"
}
}

Figure 14: An Example Voucher

The MASA populates the voucher fields as follows:

nonce: The nonce from the pledge if available. See Section 5.5.6.

assertion: The method used to verify the relationship between the pledge and registrar. See
Section 5.5.5.

pinned-domain-cert: A certificate; see Section 5.5.2. This figure is illustrative; for an example,
see Appendix C.2 where an end-entity certificate is used.

serial-number: The serial-number as provided in the voucher-request. Also see Section 5.5.5.

domain-cert-revocation-checks: Set as appropriate for the pledge's capabilities and as
documented in [RFC8366]. The MASA MAY set this field to "false" since setting it to "true"
would require that revocation information be available to the pledge, and this document does
not make normative requirements for [RFC6961], Section 4.4.2.1 of [RFC8446], or equivalent
integrations.

expires-on: This is set for nonceless vouchers. The MASA ensures the voucher lifetime is
consistent with any revocation or pinned-domain-cert consistency checks the pledge might
perform. See Section 2.6.1. There are three times to consider: (a) a configured voucher lifetime
in the MASA, (b) the expiry time for the registrar's certificate, and (c) any CRL lifetime. The
expires-on field SHOULD be before the earliest of these three values. Typically, (b) will be
some significant time in the future, but (c) will typically be short (on the order of a week or
less). The RECOMMENDED period for (a) is on the order of 20 minutes, so it w