KOMA-Script

a versatile KTEX 2z bundle

Note: This document is a translation of the German KOMA-Script manual. Several
authors have been involved to this translation. Some of them are native English speakers.
Others, like me, are not. Improvements of the translation by native speakers or experts are
welcome at all times!

The Guide

KOMA -Script

Markus Kohm

2023-06-16

Authors of the KOMA-Script Bundle: Frank Neukam, Markus Kohm, Axel Kielhorn

Legal Notes:

There is no warranty for any part of the documented software. The authors have taken
care in the preparation of this guide, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or
programs contained here.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the authors were
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

English translation of this manual by: Markus Kohm, Karl Hagen, DeepL, Kevin Pfeif-
fer, Gernot Hassenpflug, Krickette Murabayashi, Jens-Uwe Morawski, Jana Schubert, Jens
Hiithne, Harald Bongartz, Georg Grandke, Raimund Kohl, Stephan Hennig, Alexander Wil-
land, Melvin Hendrix, and Arndt Schubert.

Free screen version without any optimization of paragraph and page breaks

This guide is part of KOMA-Script, which is free under the terms and conditions of IKTEX
Project Public License Version 1.3c. A version of this license, which is valid for KOMA-
Script, is part of KOMA-Script (see 1ppl.txt). Distribution of this manual —even if it is
printed —is allowed provided that all parts of KOMA-Script are distributed with it. Distri-
bution without the other parts of KOMA-Script requires an explicit, additional authorization
by the authors.

To all my friends all over the world!

Preface to KOMA-Script 3.36 and 3.37 7

Preface to KOMA-Script 3.36 and 3.37

With KOMA-Script 3.36 a phase of major rebuilds of the sources of KOMA-Script was ini-
tiated. It started with the sources of the classes and packages. Not only a conversion to
version 3 of the package doc was done. The original source code documentation class scrdoc
was also made obsolete and replaced by koma-script-source-doc. The complete source code
documentation was also transferred to English or recreated in English. In the course of this
change, some of the sources were also reorganized within the files or moved to new files. In
the process, many dozens of new notes about undone tasks were added. Whether I will ever
be able to work through all of them myself remains to be seen.

Due to the massive modifications to the sources, it could not be ruled out from the outset
that new errors could creep in. Due to the acute shortage of beta testers, this fear has
unfortunately come true. Whether all these bugs have been fixed in the meantime is hard to
say.

More or less in parallel, a new test structure based on 13build was built. This should ensure
in the future that once reported errors do not occur again in the future.

With KOMA-Script 3.37 I started to restructure the sources of the manual. For the genera-
tion of the German and English user manual including the complete examples with PDF now
also I13build is used. In addition, a flat hierarchy is used for the user guides in all languages.
Thus there are no different files with the same filename in the sources anymore. This is not
only to satisfy CTAN requirements. With this it is also possible for the first time in a long
time to generate the manuals from the CTAN sources of KOMA-Script.

Due to the problems with the finiteness of a single developer’s time already explained in
the preface to KOMA-Script 3.28, I will therefore continue to concentrate on bug fixing, the
necessary reorganisation of the sources and compatibility with new IXTEX kernel versions in
the future. Especially with the latter, I now have the support of Marei Peischl, who is already
very busy with her own projects. She also wrote the original code for the illustrations of
pseudo-lengths and variables, for which I thank her very much. This finally made it possible
for me to fulfil a long-cherished wish of many users. With a few changes, the pseudo lengths
in the illustration are now linked to the corresponding explanations in the text.

By largely abstaining from new functions, the effort for documenting them naturally also
dwindles. Readers of this free, screen version, however, still have to live with some restrictions.
So some information — mainly intended for advanced users or capable of turning an ordinary
user into an advanced one—is reserved for the printed book, which currently exists only in
German. As a result, some links in this manual lead to a page that simply mentions this fact.
In addition, the free version is scarcely suitable for making a hard-copy. The focus, instead,
is on using it on screen, in parallel with the document you are working on. It still has no
optimized wrapping but is almost a first draft, in which both the paragraph and page breaks
are in some cases quite poor. Corresponding optimizations are reserved for the German book

Preface to KOMA-Script 3.36 and 3.37 8

editions.

The biggest thanks go to my family and above all to my wife. They absorb all my unpleasant
experiences on the Internet. They have also tolerated it for more than 25 years, when I
am again not approachable, because I am completely lost in KOMA-Script or some KTEX
problems. The fact that I can afford to invest an incredible amount of time in such a project
is entirely thanks to my wife.

Markus Kohm, Neckarhausen in May 2022.

Contents 9

Contents

Preface to KOMA -Script 3.36 and 3.37 7

1. Introduction 21
1.1. Preliminary Note 21
1.2, Structure of the Guide. 21
1.3. History of KOMA-Script oo e 22
1.4. Special Thanks 23
1.5, Legal Notes ... 24
1.6. Imstallation e 24
1.7. Bug Reports and Other Requests 24
1.8. Additional Information e 25

Part I:

KOMA -Script for Authors 26

2. Calculating the Page Layout with typearea 27
2.1. Fundamentals of Page Layout 27
2.2. Constructing the Type Area by Division....... 29
2.3. Constructing the Type Area by Describing a Circle 30
2.4. Early or Late Selection of Options i, 31
2.5. Compatibility with Earlier Versions of KOMA-Script................... 32
2.6. Adjusting the Type Area and Page Layout 33
2.7. Selecting the Paper Size 47
2.8, PS¢t 50

3. The Main Classes: scrbook, scrreprt, and scrartcl 53
3.1. Early or Late Selection of Options 54
3.2. Compatibility with Earlier Versions of KOMA-Script................... 55
3.3. Draft Mode e 56
3.4, Page Layout..... ... e 56
3.5. Choosing the Document Font Size.............. 57
3.6 Text Markup co o 58
3.7. Document Titles e 64
3.8, ADSETACh. . v vt 71
3.9. Tableof Contents it 72
3.10. Marking Paragraphs 7

3.11. Detecting Odd and Even Pages 79

Contents

10

3.12. Headers and Footers Using Predefined Page Styles 80
3.13. Imterleaf Pages 86
314, FoOtnoteso 89
3.15. Book Structure 94
3.16. Document Structure e 94
BT, Dicta .o 115
B8, LSt e e 117
3.19. Mathematics 126
3.20. Floating Environments for Tables and Figures 127
3.21. Marginal Notesot 147
3.22. AppendiX 147
3.23. Bibliography 148
3240 Index ..o e 151
4. Letters with the scrlttr2 Class or the scrletter Package 153
4.1. Early or Late Selection of Options 153
4.2. Compatibility with Earlier Versions of KOMA-Script................... 154
4.3. Draft Mode 155
4.4, Page Layoub. 156
4.5, Variables 157
4.6. Pseudo-lengths. 162
4.7. General Structure of Letter Documents 169
4.8. Choosing the Document Font Size......... 179
4.9, Text Markupo 182
4.10. Letterhead Page. 187
4.10.1. Fold Markso 187
4.10.2. Letterhead 192
4.10.30 AATeSSee . v v oot 204
4.10.4. Extra Sender Information 211
4.10.5. Reference Line 214
4.10.6. Subject 219
4.00.7. CloSINg « v v vt 223
4.10.8. Letterhead Page Footer 225

4.11. Marking Paragraphs 228
4.12. Detecting Odd and Even Pages 229
4.13. Headers and Footers with the Default Page Style 230
4.14. Interleaf Pages 235
415, Footnotes o 237
406, st . oo 240
4.17. Mathematics 243

Contents

10.

4.18. Floating Environments for Tables and Figures 243
4.19. Marginal Notest e 244
4.20. Letter Class Option Files. e 244
4.21. Address Files and Form Letters. 250
Headers and Footers with scrlayer-scrpage 255
5.1. Early or Late Selection of Options i, 255
5.2. Header and Footer Height 257
5.3, Text Markupo oo 257
5.4. Using Predefined Page Styles 260
5.5. Manipulating Page Styles 269
The Day of the Week with scrdate 280
The Current Time with scrtime 285
Accessing Address Files with scraddr 287
.1, OVEIVIEW . .ottt 287
8.2 USAZE o v v e e e 288
8.3. Package Warning Options 289
KOMA -Script Features for Other Classes with scrextend 291
9.1. Early or Late Selection of Options 291
9.2. Compatibility with Earlier Versions of KOMA-Script................... 293
9.3. Optional, Extended Features 293
9.4. Draft Mode e 294
9.5. Choosing the Document Font Size......... 294
9.6. Text Markup e 295
9.7. Document Titles e 296
9.8. Detecting Odd and Even Pages 301
9.9. Choosing a Predefined Page Style, 301
9.10. Imterleaf Pages 302
9.11. FoOtNOtes . . .ot e 304
0.12. Dicta ..o 307
0.1, LAStS . e 308
9.14. Marginal Notes 309
Support for the Law Office with scrjura 311
10.1. Early or Late Selection of Options 311
10.2. Text Markupo oot 312

10.3. Table of Contents e 314

Contents

10.4. Environment for Contracts i 314
10.4.1. ClaUtSeS « - o v vt ettt e e e e e 315
10.4.2. Paragraphs 317
10.4.3. SENLENCES . . o v vttt e 320
10.5. Cross-References 321
10.6. Additional Environments. 322
10.7. Support for Different Languages i, 325
10.8. A Detailed Example 326
10.9. State of Development 331
11. The KOMA-Script Logo with Package scrlogo 333
Part Il:
KOMA-Script for Advanced Users and Experts 334
12. Basic Functions in the scrbase Package 335
12.1. Loading the Package 335
12.2. Keys as Attributes of Families and Their Members 335
12.3. Conditional Execution 348
12.4. Defining Language-Dependent Terms 353
12.5. Identifying KOMA-Script e 357
12.6. Extensions to the INITEX Kernel o o 357
12.7. Extensions to the Mathematical Features of e-TEX.......... 358
12.8. General Mechanism for Multi-Level Hooks 358
12.9. Obsolete Options and Commands, 362
13. Controlling Package Dependencies with scrlfile 363
13.1. About Package Dependencies i 363
13.2. Actions Before and After Loading 364
13.3. Replacing Files at Input 369
13.4. Preventing File Loading 370
14. Economising and Replacing Files with scrwfile 374
15. Managing Content Lists with tocbasic 375
15.1. Basic Commands 375
15.2. Creating a Content List. i 379
15.3. Configuring Content-List Entries. 386
15.4. Internal Commands for Class and Package Authors 401
15.5. A Complete Example. 403

Contents

16.

17.

18.

19.

20.

15.6. Everything with Only One Command 406
15.7. Obsolete Befehle 412
Improving Third-Party Packages with scrhack 413
16.1. Development Status. 413
16.2. Early or Late Selection of Options 413
16.3. Using tochasic i e 414
16.4. Incorrect Assumptions about \@ptsize 415
16.5. Older Versions of hyperref 415
16.6. Inconsistent Handling of \textwidth and \textheight 416
16.7. Special Case for nomencl 416
16.8. Special Case for Section Headings 416
Defining Layers and Page Styles with scrlayer 418
17.1. Early or Late Selection of Options 418
17.2. Generic Information. 419
17.3. Declaring Layerst e 420
17.4. Declaring and Managing Page Styles. 432
17.5. Header and Footer Height i 441
17.6. Manipulating Page Styles 441
17.7. Defining and Managing Interfaces for End Users 447
Additional Features of scrlayer-scrpage 448
18.1. Manipulating Page Styles 448
18.2. Defining New Pairs of Page Styles. 451
18.3. Defining Complex Page Styles i 453
18.4. Defining Simple Page Styles with a Tripartite Header and Footer 455
18.5. Legacy Features of scrpage2. 456
Note Columns with scrlayer-notecolumn 457
19.1. Note about the State of Development 457
19.2. Early or Late Selection of Options 458
19.3. Text Markupot 459
19.4. Declaring New Note Columns 460
19.5. Making a Note 464
19.6. Forced Output of Note Columns 468
Additional Information about the typearea package 471
20.1. Experimental Features...... e 471
20.2. Expert Commands.ttt 472

20.3. Local Settings with the typearea.cfgFile. 474

Contents

20.4. More or Less Obsolete Options and Commands 474

21. Additional Information about the Main Classes and scrextend 475
21.1. Extensions to User Commands0uineiiinenneennn. 475
21.2. KOMA-Script’s Interaction with Other Packages 475
21.3. Detection of KOMA-Script Classeso oot 475
21.4. Entries to the Table of Contents 476
21.5. Font Settings e 478
21.6. Paragraph Indention or Gap 480
21.7. COUNTETS .« v v vt et e e e e e e e e e e e 481
21.8. SeCtionso 481
21.9. Bibliography 501
21.10. More or Less Obsolete Options and Commands 503

22. Additional Information about the scrlttr2 Class and the scrletter Package 504
22.1. Variables for Experienced Users 504
22.2. Additional Information about Page Styles.......... 506
22.3. 1lco Files for Experienced Users 506
22.4. Language SUPPOTT . . ottt e 510
22.5. Obsolete Commandsttt 514

A. Japanese Letter Support for scrlttr2 and scrletter 515
A.1. Japanese standard paper and envelope sizes 515

A 1.1, Japanese paper SiZeSttt 515

A.1.2. Japanese envelope SIZESttt 516

A.2. Provided Lco files 520
A.3. Examples of Japanese Letter Usage, 522
A3.1. Example Lo oo 522

A3.2. Example 2: . 523

Change Log 524
Bibliography 538
Index 543
General Index o 543
Index of Commands, Environments, and Variables 547
Index of Lengths and Counters. 559
Index of Elements Capable of Adjusting Fonts. 560
Index of Files, Classes, and Packages 561

Index of Class and Package Options. i ... 563

Contents 15

Index of Do-HOOKS . . . oo 567

List of Figures

List of Figures

2.1.

3.1.
3.3.
3.2.
3.4.
3.9.
3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.

4.14.

Two-sided layout with the box construction of the classical nine-part division,

after subtracting a binding correction o o o 30
Parameters that control the footnote layout 92
Example: Using \captionaboveof inside another floating environment 134
Example: A rectangle 134
Example: Figure beside description 136
Example: Description centered beside figure. 137
Example: Figure title top beside. 137
Example: Default caption 140
Example: Caption with partially hanging indention 140
Example: Caption with hanging indention and line break 140
Example: Caption with indention in the second line 140
Schematic of the pseudo-lengths for a letter 167
General structure of a letter document containing several individual letters ... 170
General structure of a single letter within a letter document 170
Example: letter with recipient and salutation........................... 174
Example: letter with recipient, opening, text, and closing 176
Example: letter with recipient, opening, text, closing, and postscript 177
Example: letter with recipient, opening, text, closing, postscript, and distribu-

tlon LSt ..o 178
Example: letter with recipient, opening, text, closing, postscript, distribution

list, and enclosure e 180
Example: letter with address, salutation, text, closing phrase, postscript, en-

closures, distribution list, and noxiously large font size 182
schematic display of the letterhead page outlining the most important com-

mands and variables 188
Example: letter with recipient, opening, text, closing, postscript, distribution

list, enclosure, and hole-punch mark 190
Example: letter with sender, recipient, opening, text, closing, postscript, dis-

tribution list, and enclosure. e 196
Example: letter with sender, rule, recipient, opening, text, closing, signature,

postscript, distribution list, enclosure, and hole-punch mark 198

Example: letter with extra sender information, rule, recipient, opening, text,
closing, signature, postscript, distribution list, enclosure, and hole-punch mark;
standard vs. extended letterhead 201

List of Figures

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

19.1.

. Example: letter with extra sender information, rule, recipient, opening, text,

closing, signature, postscript, distribution list, enclosure, and hole-punch mark;
left- vs. right-aligned letterhead
Example: letter with extra sender information, logo, rule, recipient, opening,
text, closing, signature, postscript, distribution list, enclosure, and hole-punch
mark; left-aligned vs. right-aligned vs. centred sender information
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, opening, text, closing, signature, postscript, distribution list, enclosure,
and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, location, date, opening, text, closing, signature, postscript, distribution
list, enclosure, and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, place, date, subject, opening, text, closing, signature, postscript, distri-
bution list, enclosure, and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, place, date, subject, opening, text, closing, modified signature, postscript,
distribution list, enclosure, and hole-punch mark
Example: letter with extended sender, logo, recipient, extra sender informa-
tion, place, date, subject, opening, text, closing, modified signature, postscript,
distribution list, enclosure, and hole-punch mark using an 1co file

Commands for setting the page header
Commands for setting the page footer

. Example: First three pages of the example club by-laws of section 10.8

. Hlustrations of some attributes of a TOC entry with the dottedtocline style .
. Nlustrations of some attributes of a TOC entry with style largetocline
. Hlustrations of some attributes of a TOC entry with the tocline style.......
. Nlustration of some attributes of the undottedtocline style with the example

of a chapter title e

A sample page for the example in chapter 19

List of Tables

List of Tables

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.

3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.

4.1.
4.2.
4.3.

Type area dimensions dependent on DIV for Ad 35
DIV defaults for Ad 36
Symbolic values for the DIV option and the DIV argument to \typearea 38
Symbolic BCOR arguments for \typearea, 40
Standard values for simple switches in KOMA-Script. 41
Output driver for option pagesize=output driver 50
Class correSpondencet e 53
Elements whose font style can be changed in scrbook, scrreprt or scrartcl with

\setkomafont and \addtokomafont 59
Font defaults for the elements of the title 68
Main title. . .o 69
Available values for the toc option 73
Default font styles for the elements of the table of contents 76
Available values of option parskip oo 78
Default values for page style elements........ 82
Macros to set up the page style of special pages 83
Available numbering styles of page numbers 85
Available values for the footnotes option 89
Available values for the open option 95
Available values for the headings option 97
Available values for the numbers option 100
Default font sizes for different levels of document sectioning 104
Default settings for the elements of a dictum 116
Available values for the captions option 129
Font defaults for the elements of figure or table captions 132
Example: Measure of the rectangle in figure 3.2 134
Alignments for multi-line captions of floating environments 142
Available values for the listof option 145
Available values for the bibliography option........................... 149
Available values for the index option 151
Supported variables in scrlttr2 and scrletter. 157
Pseudo-lengths provided by scrlttr2 and scrletter. 162
FElements whose font style can be changed in the scrlttr2 class or the scrletter

package with the \setkomafont and \addtokomafont commands........... 183
Combinable values for configuring fold marks with the foldmarks option 189

Available values for the fromalign option with scrlttr2 194

List of Tables

4.6.
4.7.
4.8.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.

10.1.

10.2.
10.3.
10.4.
10.6.

10.5.
10.7.

12.1.

15.1.
15.2.
15.3.

17.1.

17.2.

Available values for the fromrule option with scrlttr2 194
Default descriptions of the letterhead variables. 199
Default descriptions and contents of the letterhead separators without the

symbolicnames Option 200
Available values for the addrfield option with scrlttr2 207
Default font styles for the elements of the address field. 208
Available values for the priority option in scrlttr2 208
Available values for the locfield option with scrlttr2 212
Available values for the refline option with scrlttr2 215
Default descriptions of variables in the reference line 216
Default font styles for elements in the reference line...................... 217
Default descriptions of variables for the subject 220
Available values for the subject option with scrlttr2 221
Available values for the pagenumber option with scrlttr2 232
Predefined 1co files 248
Elements of scrlayer-scrpage whose font styles can be changed with the

\setkomafont and \addtokomafont commands 258
Available values for the markcase option 274
Symbolic values for the headwidth and footwidth options 278
Available extended features of scrextend 294

Elements whose scrjura font styles can be changed with \setkomafont and

\addtokomafont, including their default settings 313
Available properties for the optional argument of \Clause and \SubClause ... 316
Available values for the clausemark option to activate running heads 318
Available values for the ref option to configure the cross-reference format 323
Options provided by \DeclareNewJuraEnvironment for new contract environ-

MENES . o e 323
Example outputs of the ref-independent cross-reference commands 324
Meanings and FEnglish defaults of language-dependent terms 326
Overview of common language-dependent terms. 355
Attributes of the predefined TOC-entry styles of tocbasic 391
Options for command \DeclareNewTOCuuuuumeeneennennnn. 407

Comparing the example remarkbox environment with the figure environment 411

Options for defining page layers and the meaning of the corresponding layer
attribute 423
Hook options for page styles (in order of execution) 434

List of Tables

18.1.
19.1.

21.1.
21.2.
21.3.
21.4.
21.5.

21.6.

22.1.
22.2.

ALl
A2
A3.
AA4.
A5,
AL6.
AT

20
The layers scrlayer-scrpage defines for a page style 454
Available settings for declaring note columns 463
Style-independent attributes for declaring sectioning commands 483
Attributes of the section style when declaring a sectioning command 484
Attributes of the chapter style when declaring a sectioning command 485
Attributes of the part style when declaring a sectioning command 486
Defaults for the chapter headings of scrbook and scrreprt depending on the
headings option 488
Defaults for the headings of scrbook and scrreprt 488
Defaults for language-dependent terms 513
Language-dependent forms of the date, 514
ISO and JIS standard paper sizest 516
Japanese B-series variants 516
Main Japanese contemporary stationery 517
Japanese ISO envelope sizes 518
Japanese envelope Sizes 3 519
Supported Japanese envelope types, window sizes, and locations 521
1co files provided by KOMA-Script for Japanese window envelopes 522

Chapter 1: Introduction

Introduction

This chapter contains, among other things, important information about the structure of the
manual and the history of KOMA-Script, which begins years before the first version. You will
also find information on how to install KOMA-Script and what to do if you encounter errors.

1.1. Preliminary Note

KOMA-Script is very complex. This is due to the fact that it consists of not just a single
class or a single package but a bundle of many classes and packages. Although the classes
are designed as counterparts to the standard classes, that does not mean they provide only
the commands, environments, and settings of the standard classes, or that they imitate their
appearance. The capabilities of KOMA-Script sometimes far surpass those of the standard
classes. Some of them should be considered extensions to the basic capabilities of the XIEX
kernel.

The foregoing means that the documentation of KOMA-Script has to be extensive. In
addition, KOMA-Script is not normally taught. That means there are no teachers who know
their students and can therefore choose the teaching materials and adapt them accordingly.
It would be easy to write documentation for a specific audience. The difficulty facing the
author, however, is that the manual must serve all potential audiences. I have tried to create
a guide that is equally suitable for the computer scientist and the fishmonger’s secretary. I
have tried, although this is actually an impossible task. The result is numerous compromises,
and I would ask you to take this issue into account if you have any complaints or suggestions
to help improve the current situation.

Despite the length of this manual, I would ask you to consult the documentation first in
case you have problems. You should start by referring to the multi-part index at the end of
this document. In addition to this manual, documentation includes all the text documents
that are part of the bundle. See manifest.tex for a complete list.

1.2. Structure of the Guide

This manual is divided into several parts: There is a section for average users, one for advanced
users and experts, and an appendix with further information and examples for those who want
to understand KOMA-Script thoroughly.

part I is intended for all KOMA-Script users. This means that some information in this
section is directed at newcomers to ATEX. In particular, this part contains many examples
that are intended to clarify the explanations. Do not hesitate to try these examples yourself
and discover how KOMA-Script works by modifying them. That said, the KOMA-Script user
guide is not intended to be a I TEX primer. Those new to IXTEX should look at The Not So

Chapter 1: Introduction 22

scrartcl

Short Introduction to BTEX 2 [OPHS11] or BTEX 2¢ for Authors [Tea05b] or a IWNTEX reference
book. You will also find useful information in the many IXTEX FAQs, including the TgX
Frequently Asked Questions on the Web [FAQ13]. Although the length of the TgX Frequently
Asked Questions on the Web is considerable, you should get at least a rough overview of it
and consult it in case you have problems, as well as this guide.

part II is intended for advanced KOMA-Script users, those who are already familiar with
KTEX or who have been working with KOMA-Script for a while and want to understand more
about how KOMA-Script works, how it interacts with other packages, and how to perform
more specialized tasks with it. For this purpose, we return to some aspects of the class
descriptions from part I and explain them in more detail. In addition we document some
commands that are particularly intended for advanced users and experts. This is supplemented
by the documentation of packages that are normally hidden from the user, insofar as they do
their work beneath the surface of the classes and user packages. These packages are specifically
designed to be used by authors of classes and packages.

The appendix, which can only be found in the German book version, contains information
beyond that which is covered in part I and part II. Advanced users will find background
information on issues of typography to give them a basis for their own decisions. In addition,
the appendix provides examples for aspiring package authors. These examples are not intended
simply to be copied. Rather, they provide information about planning and implementing
projects, as well as some basic ITEX commands for package authors.

The guide’s layout should help you read only those parts that are actually of interest. Each
class and package typically has its own chapter. Cross-references to another chapter are thus
usually also references to another part of the overall package. However, since the three main
classes (scrbook, scrrprt, and scrartcl) largely agree, they are introduced together in chapter 3.
Differences between the classes, e.g., for something that only affects the class scrartcl, are
clearly highlighted in the margin, as shown here with scrartcl.

The primary documentation for KOMA-Script is in German and has been translated for your
convenience; like most of the IKTEX world, its commands, environments, options, etc., are in
English. In a few cases, the name of a command may sound a little strange, but even so, we hope
and believe that with the help of this guide, KOMA-Script will be usable and useful to you.

At this point you should know enough to understand the guide. It might, however, still be
worth reading the rest of this chapter.

1.3. History of KOMA-Script

In the early 1990s, Frank Neukam needed a method to publish an instructor’s lecture notes. At
that time KITEX was I¥TEX2.09 and there was no distinction between classes and packages —
there were only styles. Frank felt that the standard document styles were not good enough
for his work; he wanted additional commands and environments. At the same time he was
interested in typography and, after reading Tschichold’s Ausgewdhlte Aufsdatze tiber Fragen der

Chapter 1: Introduction 23

Gestalt des Buches und der Typographie (Selected Articles on the Problems of Book Design and
Typography) [Tsc87], he decided to write his own document style—and not just a one-time
solution to his lecture notes, but an entire style family, one specifically designed for European
and German typography. Thus Script was born.

Markus Kohm, the developer of KOMA-Script, came across Script in December 1992 and
added an option to use the A5 paper format. At that time neither the standard style nor
Script provided support for A5 paper. Therefore it did not take long until Markus made the
first changes to Script. This and other changes were then incorporated into Script-2, released
by Frank in December 1993.

In mid-1994, IATEX 2¢ became available and brought with it many changes. Users of Script-2
were faced with either limiting their usage to IXTEX 2¢’s compatibility mode or giving up Script
altogether. This situation led Markus to put together a new IXTEX 2 package, released on
7 July 1994 as KOMA-Script. A few months later, Frank declared KOMA-Script to be the
official successor to Script. KOMA-Script originally provided no letter class, but this deficiency
was soon remedied by Axel Kielhorn, and the result became part of KOMA-Script in December
1994. Axel also wrote the first true German-language user guide, which was followed by an
English-language guide by Werner Lemberg.

Since then much time has passed. IATEX has changed in only minor ways, but the WTEX
landscape has changed a great deal; many new packages and classes are now available and
KOMA-Script itself has grown far beyond what it was in 1994. The initial goal was to pro-
vide good ITEX classes for German-language authors, but today its primary purpose is to
provide more-flexible alternatives to the standard classes. KOMA-Script’s success has led
to e-mail from users all over the world, and this has led to many new macros—all needing
documentation; hence this “small guide.”

1.4. Special Thanks

Acknowledgements in the introduction? No, the proper acknowledgements can be found in
the addendum. My comments here are not intended for the authors of this guide—and
those thanks should rightly come from you, the reader, anyhow. I, the author of KOMA-
Script, would like to extend my personal thanks to Frank Neukam. Without his Script family,
KOMA-Script would not have come about. I am indebted to the many persons who have
contributed to KOMA-Script, but with their indulgence, I would like to specifically mention
Jens-Uwe Morawski and Torsten Kriiger. The English translation of the guide is, among many
other things, due to Jens’s untiring commitment. Torsten was the best beta-tester I ever had.
His work has particularly enhanced the usability of scrlttr2 and scrpage2. Many thanks to all
who encouraged me to go on, to make things better and less error-prone, or to implement
additional features.

Special thanks go as well to the founders and members of DANTE, Deutschsprachige An-
wendervereinigung TEX e.V, (the German-Language TEX User Group). Without the DANTE

Chapter 1: Introduction 24

server, KOMA-Script could not have been released and distributed. Thanks as well to ev-
erybody on the TEX newsgroups and mailing lists who answer questions and have helped me
provide support for KOMA-Script.

My thanks also go to all those who have always encouraged me to go further and to imple-
ment this or that feature better, with fewer flaws, or simply as an extension. I would also like
to thank the very generous donor who has given me the most significant amount of money I
have ever been paid for the work done so far on KOMA-Script.

1.5. Legal Notes

KOMA-Script is released under the IXTFX Project Public License. You will find it in the file
lppl.txt. An unofficial German-language translation is also available in 1ppl-de.txt and is
valid for all German-speaking countries.

This document and the KOMA-Script bundle are provided “as is” and without warranty of
any kind.

1.6. Installation

The three most important TEX distributions, MacTEX, MiKTEX, and TEX Live, make KOMA -
Script available through their package management software. You should install and update
KOMA-Script using these tools, if possible. Manual installation without using the package
managers is described in the file INSTALL. txt, which is part of every KOMA-Script distribu-
tion. You should also read the documentation that comes with the TEX distribution you are
using.

1.7. Bug Reports and Other Requests

If you think you have found an error in the documentation or a bug in one of the KOMA-Script
classes, packages, or another part of KOMA-Script, please do the following:

¢ Does the problem also occur if a standard class is used instead of a KOMA-Script class?
In this case, the error is most likely not with KOMA-Script, and it makes more sense to
ask your question in a public forum, a mailing list, or Usenet.

¢ Which KOMA-Script version do you use? For related information, see the log file of the
ETEX run of any document that uses a KOMA-Script class.

e If you do not use an up-to-date KOMA-Script version, please consider to install a new
KOMA-Script release. If the problem does not occur with an updated KOMA-Script,
you've already found a solution.

Chapter 1: Introduction

e Which operating system and which TEX distribution do you use? This information might
seem rather superfluous for a system-independent package like KOMA-Script or KTEX,
but time and again they have certainly been shown to play a role.

e What exactly is the problem or the error? Describe the problem. It’s better to be too
detailed than too short. Often it makes sense to explain the background.

e What does a minimal working example look like? You can easily create one by comment-
ing out content and packages from the document step by step. The result is a document
that only contains the packages and parts necessary to reproduce the problem. In ad-
dition, all loaded images should be replaced by \rule statements of the appropriate
size or by an example image from package mwe [Sch18]. Before sending your minimal
working example,remove the commented-out parts, insert the command \listfiles in
the preamble, and perform another KTEX run. At the end of the log file, you will see
an overview of the packages used. Add the minimal working example and the log file to
the end of your description of the problem.

Do not send packages, PDF, PS, or DVI files. If the entire issue or bug description, including
the minimal example and the log file is larger than a few tens of kilobytes, you’re likely doing
something wrong.

If you've followed all these steps, please create a new ticket in the KOMA-Script ticket
system at https://sf.net/p/koma-script/tickets. If you are not able to do so, you may
alternatively send your KOMA-Script (only) bug report to komascript@gmx.info.

If you want to ask your question in a Usenet group, mailing list, or Internet forum, you
should follow the procedures mentioned above and include a minimal working example as part
of your question, but usually you don’t need to provide the log-file. Instead, just add the
list of packages and package versions from the log-file and, if your minimal working example
compiles with errors, you should quote those messages from the log file.

Please note that default settings which are not typographically optimal do not represent
errors. For reasons of compatibility, defaults are preserved whenever possible in new versions
of KOMA-Script. Furthermore, typographical best practices are partly a matter of language
and culture, and so the default settings of KOMA-Script are necessarily a compromise.

1.8. Additional Information

Once you become familiar with KOMA-Script, you may want examples that show how to
accomplish more difficult tasks. Such examples go beyond the basic instructional scope of
this manual and so are not included. However, you will find more examples on the website of
the KOMA-Script Documentation Project [KDP]. These examples are designed for advanced
YTEX users and are not particularly suitable for beginners. The main language of the site is
German, but English is also welcome.

https://sf.net/p/koma-script/tickets
mailto:komascript@gmx.info

Part I.
KOMA -Script for Authors

This part provides information for writers of articles, reports, books, and letters. The average
user is probably less interested in how things are implemented in KOMA-Script and what
pitfalls exist. Also, normal users aren’t interested in obsolete options and instructions. They
want to know how to achieve things using current options and instructions, and perhaps in
some background information about typography.

The few passages in this part which contain extra information and explanations that may be
of less interest for the impatient reader are set in a sans-serif typeface and can be skipped if de-
sired. For those who are interested in more information about the implementation, side-effects
with other packages, or obsolete options and instructions, please refer to part II beginning on
page 335. That part of the KOMA-Script guide also describes all the features that were created
specially for authors of packages and classes.

Chapter 2: Calculating the Page Layout with typearea

Calculating the Page Layout with typearea

Many IXTEX classes, including the standard classes, present the user with a largely fixed
configuration of margins and page layout. In the standard classes, the choice is limited to
selecting a font size. There are separate packages, such as geometry (see [Umel(]), which
give the user complete control over, but also full responsibility for, setting the type area and
margins.

KOMA-Script takes a somewhat different approach with the typearea package. Users are
offered ways to adjust the design and algorithms based on established typographic standards,
making it easier for them to make good choices.

2.1. Fundamentals of Page Layout

At first glance, a single page of a book or other printed material consists of the margins, a header,
a body of text, and a footer. More precisely, there is also a space between the header area and the
text body, as well as between the body and the footer. The text body is called, in the jargon of
typographers and typesetters, the type area. The division of these areas, as well as their relations
to each other and to the paper, is called the page layout.

Various algorithms and heuristic methods for constructing an appropriate type area have been
discussed in the literature [Koh02]. These rules are known as the “canons of page construction.”
One approach often mentioned involves diagonals and their intersections. The result is that the
aspect ratio of the type area corresponds to the proportions of the page. In a one-sided document,
the left and right margins should have equal widths, while the ratio of the top and bottom margins
should be 1:2. In a two-sided document (e.g. a book), however, the entire inner margin (the
margin at the spine) should be the same size as each of the two outer margins; in other words, a
single page contributes only half of the inner margin.

In the previous paragraph, we mentioned and emphasised the page. It is often mistakenly thought
that the format of the page is the same as the format of the paper. However, if you look at a bound
document, you can see that part of the paper disappears in the binding and is no longer part of the
visible page. For the type area, however, it is not the format of the paper which is important; it is
the impression of the visible page to the reader. Thus, it is clear that the calculation of the type
area must account for the “lost” paper in the binding and add this amount to the width of the
inner margin. This is called the binding correction. The binding correction is therefore calculated
as part of the gutter but not the visible inner margin.

The binding correction depends on the production process and cannot be defined in general
terms. It is therefore a parameter that must be redefined for each project. In professional printing,
this value plays only a minor role, since printing is done on larger sheets of paper and then cropped
to the right size. The cropping is done so that the above relations for the visible, two-sided page
are maintained.

Chapter 2: Calculating the Page Layout with typearea

So now we know how the individual parts of a page relate to each other. However, we do not
yet know how wide and high the type area is. Once we know one of these two dimensions, we
can calculate all the other dimensions from the paper format and the page format or the binding
correction.

type area height : type area width = page height : page width
top margin : footer margin=1:2
left margin : right margin=1:1
half inner margin : outer margin=1:2
page width = paper width — binding correction
top margin + bottom margin = page height — type area height
left margin + right margin = page width — type area width
half inner margin + outer margin = page width — type area width

half inner margin + binding correction = gutter

The values left margin and right margin only exist in a one-sided document while half inner margin
and outer margin only exist in a two-sided document. We use half inner margin in these equations,
since the full inner margin is an element of the whole two-page spread. Thus, only half of the inner
margin, half inner margin, belongs to a single page.

The question of the width of the type area is also discussed in the literature. The optimum
width depends on several factors:

o the size, width, and type of font used,
o the line spacing,

o the word length,

o the available space.

The importance of the font becomes clear once you realize what serifs are for. Serifs are small
strokes that finish off the lines of letters. Letters with vertical lines touching the text baseline
disturb the flow rather than keeping the eye on the line. It is precisely with these letters that the
serifs lie horizontally on the baseline and thus enhance the horizontal effect of the font. The eye
can better follow the line of text, not only when reading the words but also when jumping back to
the beginning of the next line. Thus, the line length can actually be slightly longer for a serif font
than for a sans serif font.

Leading refers to the vertical distance between individual lines of text. In IATEX, the leading is
set at about 20% of the font size. With commands like \1inespread, or better, packages like
setspace (see [TF11]), you can change the leading. A wider leading makes it easy for the eye to
follow the line. A very wide leading, however, disturbs reading because the eye has to travel long

Chapter 2: Calculating the Page Layout with typearea

distances between the lines. In addition, the reader becomes uncomfortable because of the visible
striped effect. The uniform grey value of the page is thereby spoiled. Nevertheless, the lines can
be longer with a wider leading.

The literature gives different values for good line lengths, depending on the author. To some
extent, this is related to the author’s native language. Since the eye usually jumps from word
to word, short words make this task easier. Across all languages and fonts, a line length of 60
to 70 characters, including spaces and punctuation, forms a usable compromise. This requires
well-chosen leading, but IATEX's default is usually good enough. Longer line lengths should only be
considered for highly-developed readers who spend many hours a day reading. But even then, line
lengths beyond 80 characters are unacceptable. In each case, the leading must be appropriately
chosen. An extra 5% to 10% is recommended as a good rule of thumb. For typefaces like Palatino,
which require more than 5% leading for normal line lengths, even more can be required.

Before looking at the actual construction of the page layout, there are a few minor points you
should know. IATEX does not start the first line in the text area of a page at the upper edge
of the text area but sets the baseline at a defined distance from the top of the text area. Also,
IATEX recognizes the commands \raggedbottom and \flushbottom. \raggedbottom specifies
that the last line of a page should be positioned wherever it was calculated. This means that the
position of this line can be different on each page, up to the height of one line— even more when
the end of the page coincides with headings, figures, tables, or the like. In two-sided documents
that is usually undesirable. The second command, \flushbottom, makes sure that the last line is
always at the lower edge of the text area. To achieve this vertical compensation, IATEX may have
to stretch vertical glue beyond what is normally allowed. Paragraph skip is such a stretchable,
vertical glue, even when set to zero. To avoid stretching on normal pages where paragraph spacing
is the only stretchable glue, the height of the text area should be a multiple of the height of the
text line, including the distance of the first line from the top of the text area.

This concludes the fundamentals. In the following two sections, the methods of construction
offered by KOMA-Script are presented in detail.

2.2. Constructing the Type Area by Division

The easiest way to make sure that the text area has the same ratio as the page is as follows:

o First, subtract the BCOR required for the binding correction from the inner edge of the
paper, and divide the rest of the page vertically into DIV rows of equal height.

o Next, divide the page horizontally into the same number (D/V) of columns of equal width.

e Then, take the uppermost row as the upper margin and the two lowermost rows as the lower
margin. If you are printing two-sided, you similarly take the innermost column as the inner
margin and the two outermost columns as the outer margin.

e Then add the binding correction BCOR to the inner margin.

Chapter 2: Calculating the Page Layout with typearea

page-ltayout-left page layout right

Figure 2.1.: Two-sided layout [
with the box construction of the
classical nine-part division, after
subtracting a binding correction [

What remains within the page is the text area. The width and height of the text area and margins
result automatically from the number of rows and columns, DIV. Since the margins always need
three stripes, DIV must be greater than three. In order that the text area occupy at least twice as
much space as the margins, DIV should really be at least nine. With this value, the design is also
known as the classical nine-part division (see figure 2.1).

In KOMA-Script, this kind of design is implemented with the typearea package, where the
bottom margin may drop any fractions of a line in order to comply with the constraint for the
height of the type area mentioned in the previous paragraph and thereby reduce the problem
mentioned with \flushbottom. For A4 paper, DIV is predefined according to the font size (see
table 2.2, page 36). If there is no binding correction (BCOR = 0pt), the results roughly match
the values of table 2.1, page 35.

In addition to the predefined values, you can specify BCOR and DIV as options when loading
the package (see section 2.4, starting on page 33). There is also a command to calculate the type
area explicitly by providing these values as parameters (see also section 2.4, page 39).

The typearea package can automatically determine the optimal value of D/V for the font and
leading used. Again, see section 2.4, page 36.

2.3. Constructing the Type Area by Describing a Circle

In addition to the construction method for the type area described above, there is an even more
traditional, or even medieval, method found in the literature. The aim of this method is not just
to have the same ratios between page size and type area; it is considered optimal when the height
of the text area corresponds to the width of the page. This means that a circle can be drawn

Chapter 2: Calculating the Page Layout with typearea

that will touch both the sides of the page and the top and bottom of the text area. The exact
procedure can be found in [Tsc87].

A disadvantage of this late-medieval canon of page construction is that the width of the text
area no longer depends on the font. One no longer chooses the text area to match the font.
Instead, the author or typesetter must choose the appropriate font for the text area. This should
be considered mandatory.

In the typearea package, this construction is modified to determine the DIV value by selecting
a special (normally meaningless) DIV value or a special, symbolic indication of the DIV value so
that the resulting type area comes as close as possible to the late-medieval page canon. Hence it
relies in turn on the method of constructing the type area by division.

2.4. Early or Late Selection of Options

This section introduces a special feature of KOMA-Script which, in addition to typearea, is also
relevant to other KOMA-Script packages and classes. This section appears in nearly identical
form in several chapters, so you can find all the information about a single package or class in
the relevant chapter. Users who are interested not just in a particular package or class but in
getting an overview of KOMA-Script as a whole only need to read this section in one of the
chapters and can then skip it as they study the guide.

\documentclass[option list J{KOMA-Script class?}
\usepackage[option list]l{package list}

XTEX allows users to pass class options as a comma-separated list of keywords in the optional
argument to \documentclass. In addition to being passed to the class, these options are also
passed on to all packages that can understand them. Users can also pass a similar comma-
separated list of keywords in the optional argument of \usepackage. KOMA-Script extends
the option mechanism for the KOMA-Script classes and some packages with further options.
Thus most KOMA-Script options can also take a value, so an option does not necessarily
take the form option, but can also take the form option=value. Except for this difference,
\documentclass and \usepackage in KOMA-Script function as described in [Tea05b] or any
introduction to WTEX, for example [OPHS11].

When using a KOMA-Script class, you should not specify options when loading the typearea
or scrbase packages. The reason for this restriction is that the class already loads these
packages without options, and IANTEX refuses to load a package multiple times with different
option settings.

Setting the options with \documentclass has one major disadvantage: unlike the interface
described below, the options in \documentclass are not robust. So commands, lengths,
counters, and similar constructs may break inside the optional argument of this command.
For example, with many non-KOMA-Script classes, using a I¥TEX length in the value of an
option results in an error before the value is passed to a KOMA-Script package and it can take

Chapter 2: Calculating the Page Layout with typearea

v3.01b

control of the option execution. So if you want to use a IXTEX length, counter, or command
as part of the value of an option, you should use \KOMAoptions or \KOMAoption. These
commands will be described next.

\KOMAoptions{option list}
\KOMAoption{option}{value list}

KOMA-Script also provides the ability to change the values of most class and package options
even after loading the class or package. You can use the \KOMAoptions command to change
the values of a list of options, as in \documentclass or \usepackage. Each option in the
option list has the form option=value.

Some options also have a default value. If you do not specify a value, that is if you give the
option simply as option, then this default value will be used.

Some options can have several values simultaneously. For such options, it is possible, with
the help of \KOMAoption, to pass a list of values to a single option. The individual values
are given as a comma-separated value list.

KOMA-Script uses the commands \FamilyOptions and \FamilyOption with the family
“KOMA" to implement this ability. Advanced users will find more on these instructions in sec-
tion 12.2, page 340.

Options set with \KOMAoptions or \KOMAoption will reach both the KOMA-Script class
and any previously loaded KOMA-Script packages that recognise these options. If an option
or a value is unknown, scrbase will report it as an error.

2.5. Compatibility with Earlier Versions of KOMA -Script

Those who produce their documents from source code typically attach the utmost importance
to the fact that future INTEX runs will yield exactly the same result. In some cases, however,
improvements and bug fixes to the package will result in changes of behaviour, especially to
the layout. This, however, may be undesirable.

version=value
version=first

version=last

Since Version 3.01b, typearea has been able to choose whether the source file should, as much
as possible, continue to produce exactly the same result within a I¥TEX run or should be
formatted according to the modifications of the latest version. You can specify the version
with which you want your file to be compatible by using the version option. Compatibility
with the oldest supported KOMA-Script version can be achieved with version=first or
version=2.9 or version=2.9t. Setting value to an unknown release number will result in a
warning message and selects version=first for safety.

Chapter 2: Calculating the Page Layout with typearea

v3.0la

With version=last, you can select the latest version. In this case, you give up backwards
compatibility. If the option is used without a value, last is assumed. This also corresponds
to the default setting, as long as you do not use any deprecated options.

If you use a deprecated option of KOMA-Script 2, KOMA-Script 3 will switch to version=
first automatically. This will also result in a warning message that explains how to prevent
this switch. Alternatively, you can choose a different setting for version with the desired
compatibility after the deprecated option.

Compatibility is primarily a question of line and page breaks (wrapping). If you choose
compatibility with an older version, new options that do not affect wrapping are still avail-
able. The version option does not affect any wrapping changes that are the result of fixing
unambiguous errors. If you need unconditional wrapping compatibility even in the case of
bugs, you should physically save the old KOMA-Script version you need together with your
document.

Note that you cannot change the version option after loading the typearea package. Setting
this option with \KOMAoptions or \KOMAoption will therefore cause an error.

2.6. Adjusting the Type Area and Page Layout

The typearea package offers two different user interfaces to influence the construction of the
type area. The most important method is to specify options when loading the package. For
information on how to setup options with KOMA-Script, please refer to section 2.4.

In this section the classes used in the examples are not existing KOMA-Script classes but
hypothetical ones. This guide assumes that ideally an appropriate class is available for each
task.

BCOR=correction

Use the BCOR=correction option to specify the absolute value of the binding correction, i.e.
the width of the area lost from the paper during the binding process. This value is then
automatically taken into account when constructing the page layout and is added back to the
inner (or left) margin during output. In the value of the correction, you can specify any
measurement unit understood by TEX.

Example: Suppose you create a financial report. The whole thing should be printed out one-
sided on A4 paper and then stapled in a binder folder. The clip of the folder covers
7.5mm. The stack of pages is very thin, so at most another 0.75 mm will be lost
from bending and the sheets themselves. Therefore, you can write:

\documentclass [adpaper] {report}
\usepackage [BCOR=8.25mm] {typearea}

with BCOR=8.25mm as an option to typearea or

Chapter 2: Calculating the Page Layout with typearea

\documentclass [adpaper,BCOR=8.25mm] {report}
\usepackage{typearea}

when using BCOR=8.25mm as a global option.

When using a KOMA-Script class, you do not need to load the typearea package
explicitly:

\documentclass [BCOR=8.25mm] {scrreprt}

You can omit the adpaper option with scrreprt, since this is the default for all
KOMA-Script classes.

If you want to set the option to a new value later, you can, for example, use the
following:

\documentclass{scrreprt}
\KOMAoptions{BCOR=8.25mm}

Defaults are initialized when the scrreprt class is loaded. Changing a setting with
the \KOMAoptions or \KOMAoption commands will automatically calculate a new
type area with new margins.

Note you must pass this option as a class option when loading one of the KOMA-Script
classes, as in the example above, or via \KOMAoptions or \KOMAoption after loading the class.
When you use a KOMA-Script class, you should not load the typearea package explicitly with
\usepackage, nor should you specify it as an optional argument when loading the package
if you are using another class. If the option is changed with \KOMAoptions or \KOMAoption
after loading the package, the type area and margins are automatically recalculated.

DIV=factor

The DIV=factor option specifies the number of strips into which the page is divided horizon-
tally and vertically during the construction of the type area. The exact construction method
is found in section 2.2. It’s important to realise that the larger the factor, the larger the
text block and the smaller the margins. Any integer value greater than 4 is valid for factor.
Note, however, that large values can cause violations in the constraints on the margins of the
type area, depending on how you set other options. In extreme cases, the header may fall
outside of the page. When you use the DIV=factor option, you are responsible for complying
with the margin constraints and for choosing a typographically pleasing line length.

In table 2.1, you will find the sizes of the type areas for several DIV factors for the A4 page
with no binding correction. In this case, the other constraints that are dependent on the font
size are not taken into account.

Example: Suppose you are writing up the minutes of a meeting using the minutes class. The
whole thing should be two-sided. Your company uses 12 pt Bookman font. This

Chapter 2: Calculating the Page Layout with typearea

Table 2.1.: Type area dimensions dependent on DIV for
A4 regardless of \topskip or BCOR Type area Margins

DIV width Theight top inner

6 105.00 148.50 49.50 35.00
7 120.00 169.71 42.43 30.00
8§ 131.25 185.63 37.13 26.25
9 140.00 198.00 33.00 23.33
10 147.00 207.90 29.70 21.00
11 15273 216.00 27.00 19.09
12 157.50 222,75 24.75 17.50
13 161.54 228.46 22.85 16.15
14 165.00 233.36 21.21 15.00
15 168.00 237.60 19.80 14.00

(all lengths in mm)

font, which is one of the standard PostScript fonts, is enabled in I TEX with the
command \usepackage{bookman}. Bookman is a very wide font, meaning that
the individual characters are relatively wide compared to their height. Therefore,
the default setting for DIV in typearea is too small. After thoroughly studying this
entire chapter, you conclude that a value of 15, instead of 12, is most suitable. The
minutes will not be bound but punched and kept in a folder, and thus no binding
correction is necessary. So you write:

\documentclass[adpaper,twoside] {minutes}
\usepackage{bookman}
\usepackage [DIV=15] {typearea}

When you're done, you become aware that the minutes will from now on be col-
lected and bound together as a book at the end of the quarter. The binding is to be
a simple glue binding because this is only being done to conform to ISO 9000 and
nobody is actually going to read them. The binding, including space lost in folding
the pages, requires an average of 12mm You change the options of the typearea
package accordingly and use the class for minutes that conform to ISO 9000 regu-
lations:

\documentclass [adpaper,twoside] {is09000p}
\usepackage{bookman}
\usepackage [DIV=15,BCOR=12mm] {typearea}

Of course, it is equally possible to use a KOMA-Script class here:

\documentclass[twoside,DIV=15,BCOR=12mm] {scrartcl}
\usepackage{bookman}

The adpaper option can be left out when using the scrartcl class, as it is predefined

Chapter 2: Calculating the Page Layout with typearea

Table 2.2.: DIV defaults for A4

base font size: 10pt 11pt 12pt
DIV: 8 10 12

in all KOMA-Script classes.

Note that when using this option with one of the KOMA-Script classes, as in the example
above, it must be passed either as a class option, or via \KOMAoptions or \KOMAoption after
loading the class. When using a KOMA-Script class, the typearea package should not be
loaded explicitly with \usepackage, nor should the option be given as an optional argument
thereto. If the option is changed via \KOMAoptions or \KOMAoption after loading the package,
the type area and margins are automatically recalculated.

DIV=calc
DIV=classic

As already mentioned in section 2.2, there are fixed defaults for DIV when using A4 paper.
These can be found in table 2.2. However, such fixed values have the disadvantage that they
do not take into account the letter spacing of the font used. With A4 and fairly narrow
fonts, this can quickly lead to an unpleasantly high number of characters per line. See the
considerations in section 2.1. If you choose a different paper size, typearea will calculate an
appropriate DIV value for you. Of course, you can also apply this same calculation to A4.
To do so, simply use DIV=calc in place of DIV=factor. Of course, you can also specify this
option explicitly for all other paper sizes. If you want automatic calculation, this specification
is useful, as it is possible to set different preferences in a configuration file (see section 20.3).
Explicitly specifying the DIV=calc option overrides such configuration settings.

You can also select the traditional page layout mentioned in section 2.3, the medieval page
canon. Instead of the DIV=factor or DIV=calc option, simply use the DIV=classic option.
A DIV value which is as close as possible to the medieval page canon is then chosen.

Example: In the example using the Bookman font and the DIV=factor option, the problem
was to select a DIV value that better matched the font. Modifying that example,
you can simply leave the calculation of this value to typearea:

\documentclass [adpaper,twoside] {protocol}
\usepackage{bookman}
\usepackage [DIV=calc]{typearea}

Note that when using this option with one of the KOMA-Script classes, as in the example
above, it must be passed either as a class option, or via \KOMAoptions or \KOMAoption after
loading the class. When using a KOMA-Script class, the typearea package should not be loaded
explicitly with \usepackage, nor should the option be given as an optional argument. If the

Chapter 2: Calculating the Page Layout with typearea

option is changed via \KOMAoptions or \KOMAoption after loading the package, the type area
and margins are automatically recalculated.

DIV=current
DIV=last

If you’ve been following the examples closely, you already know how to calculate a DIV value
based on the font you chose when using a KOMA-Script class together with a font package.

The difficulty with doing so is that the KOMA-Script class already loads the typearea package
itself. Thus, it is not possible to pass options as optional arguments to \usepackage. It would
also be pointless to specify the DIV=calc option as an optional argument to \documentclass.
This option would be evaluated immediately on loading the typearea package and as a result the
type area and margins would be calculated for the standard IATEX font and not for the font loaded
later.

However, it is possible to recalculate the type area and margins after loading the font with the
aid of \KOMAoptions{DIV=calc} or \KOMAoption{DIV}{calc}. The option DIV=calc will then
request a DIV value for an appropriate line length.

As it is often more convenient to set the DIV option not after loading the font but at a more
noticeable point, such as when loading the class, the typearea package offers two further symbolic
values for this option.

The option DIV=current recalculates the type area and margins using the current DIV value.
This is less important for recalculating the type area after loading a different font. Instead,
it is useful if, for example, you change the leading while keeping the DIV value the same
and want to ensure the margin constraint that \textheight minus \topskip is a multiple of
\baselineskip.

The option DIV=1last will recalculate the type area and margins using exactly the same
settings as the last calculation.

By the way, if the last typeset area calculation before using DIV=1ast or DIV=current was
done using \areaset, the recalculation will be done using \areaset again. It then corresponds
to \areaset [current]{\textwidth}\textheight.

Example: Let’s suppose again that we need to calculate an appropriate line length for a type
area using the Bookman font. At the same time, a KOMA-Script class is used.
This is very easy with the symbolic value last and the command \KOMAoptions:

\documentclass [BCOR=12mm,DIV=calc,twoside]{scrartcl}
\usepackage{bookman}
\KOMAoptions{DIV=last}

If you decide later that you need a different DIV value, just change the setting of
the optional argument to \documentclass.

For a summary of all possible symbolic values for the DIV option, see table 2.3. Note that
the use of the fontenc package may also cause INTEX to load a different font.

Chapter 2: Calculating the Page Layout with typearea

Table 2.3.: Available symbolic values for the DIV option or the DIV argument to \typearea[BCOR]
{pIVv}

areaset
Recalculate page layout.

calc
Recalculate type area including choice of appropriate DIV value.
classic
Recalculate type area using medieval book design canon (circle-based calculation).
current
Recalculate type area using current DIV value.
default
Recalculate type area using the standard value for the current page format and
current font size. If no standard value exists, calc is used.
last

Recalculate type area using the same DIV argument as was used in the last call.

Frequently, the type area must be recalculated in combination with a change in the line
spacing (leading). Since the type area should be calculated in such a way that a whole number
of lines fits in the text block, a change in the leading normally requires a recalculation of the
type area.

Example: Suppose that you require a 10 pt font and a spacing of 1.5 lines for a dissertation.
By default, ITEX sets the leading for 10 pt fonts at 2 pt, in other words 1.2 lines.
Therefore, you must use an additional stretch factor of 1.25. Suppose also that you
need a binding correction of 12mm. Then the solution to the problem might look
like this:

\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}

\linespread{1.25}
\KOMAoptions{DIV=last}

Since typearea always executes the \normalsize command itself when calculat-
ing a new type area, it is not strictly necessary to set the chosen leading with
\selectfont after \linespread, since this will already be done in the recalcula-
tion.

When using the setspace package (see [TF11]), the same example would appear as
follows:
\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]{scrreprt}

\usepackage [onehalfspacing] {setspace}
\KOMAoptions{DIV=last}

Chapter 2: Calculating the Page Layout with typearea

As you can see from the example, the setspace package saves you from needing to know the
correct stretch value. However, this only applies to the standard font sizes 10 pt, 11 pt, and
12 pt. For all other font sizes, the package uses an approximate value.

At this point, note that the line spacing for the title page should be reset to the normal
value, and the indexes should be set with the normal line spacing as well.

Example: Here is a complete example:

\documentclass[10pt,twoside,BCOR=12mm,DIV=calc]
{scrreprt}

\usepackage{setspace}
\onehalfspacing
\AfterTOCHead{\singlespacing}
\KOMAoptions{DIV=last}
\begin{document}
\title{Title}
\author{Markus Kohm}
\begin{spacing}{1}

\maketitle
\end{spacing}
\tableofcontents
\chapter{0k}
\end{document}

Also see the notes in section 2.8. The \AfterTOCHead command is described in
chapter 15 of part II on page 382.

Note also that changing the line spacing can also affect the page’s header and footer. For
example, if you are using the scrlayer-scrpage package, you have to decide for yourself whether
you prefer to have the normal or the changed leading. See the singlespacing option in
chapter 17, page 437.

Note that when using this option with one of the KOMA-Script classes, as in the example
above, it must be passed either as a class option, or via \KOMAoptions or \KOMAoption after
loading the class. When using a KOMA-Script class, the typearea package should not be
loaded explicitly with \usepackage, nor should the option be given as an optional argument
thereto. If the option is changed via \KOMAoptions or \KOMAoption after loading the package,
the type area and margins are automatically recalculated.

\typearea [BCOR]{DIV}
\recalctypearea

If the DIV option or the BCOR option is set after loading the typearea package, the \typearea
command will be called internally. When setting the DIV option, the symbolic value current
is used internally for BCOR, which for reasons of completeness is also found in table 2.4. When
setting the BCOR option, the symbolic value last is used internally for DIV. If instead you want

Chapter 2: Calculating the Page Layout with typearea

Table 2.4.: Available symbolic BCOR arguments for \typearea [BCOR]1{DIV}

current
Recalculate type area with the currently valid BCOR value.

the type area and margins to be recalculated using the symbolic value current for DIV, you can
use \typearealcurrent]{current} directly.

If you change both BCOR and DIV, you should use \typearea, since then the type area and
margins are recalculated only once. With \KOMAoptions{DIV=factor ,BCOR=correction}
the type area and margins are recalculated once for the change to DIV and again for the
change to BCOR.

The command \typearea is currently defined so as to make it possible to change the type area
in the middle of a document. However, several assumptions about the structure of the IATEX kernel
are made, and internal definitions and sizes of the kernel are changed. Since changes are only made
to the IATEX kernel to fix bugs, there is a high likelihood, though no guarantee, that this will still
work in future versions of IATEX 2. When used within the document, a page break will result.

Since \KOMAoption{DIV}{last}, \KOMAoptions{DIV=last}, or \typeareal[current]
{last} is frequently needed to recalculate the type area and margins, there is a convenience
command, \recalctypearea.

Example: If you find the notation
\KOMAoptions{DIV=last}
or
\typearea[current] {last}

too cumbersome for recalculating text area and margins because of the many special
characters, you can simply use

\recalctypearea

twoside=simple switch

twoside=semi

As explained in section 2.1, the distribution of the margins depends on whether the document
is to be printed one-sided or two-sided. For one-sided printing, the left and right margins
are the same width, whereas for two-sided printing the inner margin of one page is only half
as wide as the corresponding outer margin. To invoke two-sided printing, you must give
the typearea package the twoside option. For the simple switch, you can use any of the
standard values for simple switches in table 2.5. If the option is passed without a value, the
value true is assumed, so two-sided printing is enabled. Deactivating the option leads to
one-sided printing.

Chapter 2: Calculating the Page Layout with typearea

Table 2.5.: Standard values for simple switches in KOMA-Script

Value Description

true activates the option

on activates the option
yes activates the option
false deactivates the option
off deactivates the option
no deactivates the option

In addition to the values in table 2.5, you can also use the value semi. This value results
in two-sided printing with one-sided margins and one-sided, that is non-alternating, marginal
notes. Beginning with KOMA-Script version 3.12, binding corrections (see BCOR, page 33) will
be part of the left margin on odd pages but part of the right margin on even pages. But if you
switch on compatibility with a prior version of KOMA-Script (see section 2.5, page 32), the
binding correction will be part of the left margin on both pages while using twoside=semi.

The option can also be passed as class option in \documentclass, as a package option with
\usepackage, or even after loading typearea with \KOMAoptions or \KOMAoption. Using this
option after loading typearea automatically results in the recalculation of the type area using
\recalctypearea (see page 39). If the two-sided mode was active before the option was set,
a page break is made to the next odd page before the recalculation.

twocolumn=simple switch

To compute an appropriate type area with the help of DIV=calc, it is useful to know in advance
if the document is to be typeset in one or two columns. Since the considerations about line
length in section 2.1 apply to each column, the type area in two-column documents can be up
to twice as wide as in one-column documents.

To make this distinction, you must tell typearea if the document is to be set with two
columns using the twocolumn option. Since this is a simple switch, any of the standard
values for simple switches from table 2.5 are valid. If the option is passed without a value, the
value true is used, i.e. the two-column setting. Deactivating the option returns you to the
default one-column setting.

The option can also be passed as a class option in \documentclass, as a package op-
tion to \usepackage, or even after loading typearea with \KOMAoptions or \KOMAoption.
Using this option after loading typearea will automatically recalculate the type area using
\recalctypearea (see page 39).

Chapter 2: Calculating the Page Layout with typearea

v3.00

headinclude=simple switch
footinclude=simple switch

So far we have discussed how the type area is calculated and the relationship of the margins to
one another and between margins and body of the text. But one important question has not been
answered: What exactly are the margins?

At first glance the question appears trivial: Margins are those parts on the right, left, top, and
bottom of the page which remain empty. But this is only half the story. Margins are not always
empty. Sometimes there can be marginal notes, for example (see the \marginpar command in
[OPHS11] or section 3.21).

For the top and bottom margins, the question becomes how to handle headers and footers. Do
these two belong to the text body or to their respective margins? This question is not easy to
answer. Clearly an empty footer or header belongs to the margins, since it cannot be distinguished
from the rest of the margins. A footer that contains only the pagination looks more like a margin
and should therefore be counted as such. It is irrelevant for the visual effect whether headers
or footers are easily recognized as such when reading or skimming. The decisive factor is how a
well-filled page appears when viewed out of focus. For this purpose, you could, for example, steal
the glasses of a far-sighted grandparent and hold the page about half a meter from the tip of your
nose. If you lack an available grandparent, you can also adjust your vision to infinity and look at
the page with one eye only. Those who wear glasses have a clear advantage here. If the footer
contains not only the pagination but also other material like a copyright notice, it looks more
like a slightly detached part of the body of the text. This needs to be taken into account when
calculating the type area.

For the header, this is even more complicated. The header often contains running heads. If you
use the current chapter and section titles in your running head and these titles are long, the header
itself will necessarily be very long. In this case, the header again acts like a detached part of the
text body and less like an empty margin. This effect is reinforced if the header contains not only
the chapter or section title but also the pagination. With material on the right and left side, the
header no longer appears as an empty margin. It is more difficult if the pagination is in the footer
and the length of the running titles varies, so that the header may look like part of the margin
on one page and part of the text body on another. Under no circumstances should you treat the
pages differently. That would lead to vertically jumping headers, which is not suitable even for a
flip book. In this case it is probably best to count the header as part of the text body.

The decision is easy when the header or footer is separated from the actual text body by a line.
This will give a “closed” appearance and the header or footer should be calculated as part of the
text body. Remember: It is irrelevant that the line improves the optical separation of text and
header or footer; only the appearance when viewed out of focus is important.

The typearea package cannot determine on its own whether to count headers and footers as
part of the text body or the margin. The headinclude and footinclude options cause the
header or footer to be counted as part of the text. These options, being simple switches,
accept the standard values for simple switches in table 2.5. You can use the options without

Chapter 2: Calculating the Page Layout with typearea

specifying a value, in which case the value true is used for the simple, i.e. the header or
footer is counted as part of the text.

If you are unsure what the correct setting should be, reread the explanations above. The
default is usually headinclude=false and footinclude=false, but this can change in the
KOMA-Script classes or in other KOMA-Script packages depending on the options used (see
section 3.1 and chapter 5).

Note that these options must be passed as class options when using one of the KOMA-Script
classes, or after loading the class with \KOMAoptions or \KOMAoption. Changing these options
after loading the typearea package does not automatically recalculate the type area. Instead,
the changes only take effect the next time the type area is recalculated. For recalculation
of the type area, see the DIV option with the values last or current (see page 37) or the
\recalctypearea command (see page 39).

mpinclude=simple switch

In addition to documents where the header and footer are more likely to be part of the text
body than the margins, there are also documents where marginal notes should be considered
part of the text body as well. The option mpinclude does exactly this. The option, as a

simple switch, accepts the standard values for simple switches in table 2.5. You can also
pass this option without specifying a value, in which case true is assumed.

The effect of mpinclude=true is that a width-unit is removed from the main text body and
used as the area for marginal notes. With the mpinclude=false option, which is the default
setting, part of the normal margin is used for marginal notes. The width of that area is one
or one-and-a-half width units, depending on whether you have chosen one-sided or two-sided
printing. The mpinclude=true option is mainly for experts and so is not recommended.

In most cases where the option mpinclude makes sense, you also require a wider area for
marginal notes. Often, however, only a part of the marginal note’s width should be part of the
text area, not the whole width, for example if the margin is used for quotations. Such quotations
are usually set as unjustified text, with the flush edge against the text area. Since the unjus-
tified text gives no homogeneous optical impression, these lines can protrude partially into the
margin. You can accomplish that by using the option mpinclude and by increasing the length
\marginparwidth after the type area has been set up. The length can be easily enlarged with the
command \addtolength. How much the length has to be increased depends on the individual
situation and it requires a certain amount of sensitivity. This is another reason the mpinclude
option is primarily intended for experts. Of course you can specify, for example, that the marginal
notes should project a third of the way into the normal margin by using the following:

\setlength{\marginparwidth}{1.5\marginparwidth}

Currently there is no option to enlarge the space for marginal notes within the text area. There
is only one way to accomplish this: first, either omit the mpinclude option or set it to false,
and then, after the type area has been calculated, reduce \textwidth (the width of the text

Chapter 2: Calculating the Page Layout with typearea

body) and increase \marginparwidth (the width of the marginal notes) by the same amount.
Unfortunately, this procedure cannot be combined with automatic calculation of the DIV value. In
contrast, mpinclude is taken into account with DIV=calc (see page 36).

Note that these options must be passed as class options when using one of the KOMA -Script
classes, or after loading the class with \KOMAoptions or \KOMAoption. Changing these options
after loading the typearea package does not automatically recalculate the type area. Instead,
the changes only take effect the next time the type area is recalculated. For recalculation
of the type area, see the DIV option with the values last or current (see page 37) or the
\recalctypearea command (see page 39).

headlines=number of lines
headheight=height

We have seen how to calculate the type area using the typearea package and how to specify
whether the header and footer are part of the text or the margins. However, especially for the
header, we still have to specify the height. This is achieved with the options headlines and
headheight.

The headlines option specifies the number of lines of text in the header. The typearea
package uses a default of 1.25. This is a compromise: large enough for underlined headers
(see section 3.12) and small enough that the relative weight of the top margin is not affected
too much when the header is not underlined. Thus the default value will usually be adequate.
In special cases, however, you may need to adjust the header height more precisely to your
actual requirements.

Example: Suppose you want to create a two-line header. Normally this would result in ITEX
issuing the warning “overfull \vbox” for each page. To prevent this from hap-
pening, you tell the typearea package to calculate an appropriate type area:

\documentclass [adpaper]{article}
\usepackage [headlines=2.1]{typearea}

If you use a KOMA-Script class, you should pass this option directly to the class:
\documentclass[adpaper,headlines=2.1]{scrartcl}

Commands that can be used to define the contents of a two-line header can be
found in chapter 5.

In some cases it is useful to be able to specify the header height not in lines but directly
as a length. This is accomplished with the alternative option headheight. All lengths and
sizes that IXTEX understands are valid for height. Note, however, that if you use a INTEX
length such as \baselineskip, its value is not fixed at the time the option is set. The value
that will be used will be the one current at the time the type area and margins are calculated.
Also, INTEX lengths like \baselineskip should never be used in the optional argument of
\documentclass or \usepackage.

Chapter 2: Calculating the Page Layout with typearea

Please be sure to note that these options must be passed as class options when using one
of the KOMA-Script classes, or after loading the class with \KOMAoptions or \KOMAoption.
Changing these options after loading the typearea package does not automatically recalculate
the type area. Instead, the changes only take effect the next time the type area is recalculated.
For recalculation of the type area, see the DIV option with the values last or current (see
page 37) or the \recalctypearea command (see page 39).

footlines=number of lines
footheight=height
\footheight

Like the header, the footer also requires an indication of how high it should be. But unlike
the height of the header, the IXTEX kernel does not provide a length for the height of the
footer. So typearea defines a new length, \footheight, if it does not already exist. Whether
this length will be used by classes or packages to design the headers and footers depends on
the individual classes and packages. The KOMA-Script package scrlayer-scrpage incorporates
\footheight and actively cooperates with typearea. The KOMA-Script classes, on the other
hand, do not recognize \footheight because without the help of packages they offer only
page styles with single-line page footers.

You can use footlines to set the number of lines in the footer, similar to headlines for
the number of lines in the header. By default the typearea package uses 1.25 footer lines.
This value is a compromise: large enough to accommodate an overlined or underlined footer
(see section 3.12), and small enough that the relative weight of the bottom margin is not
affected too much when the footer lacks a dividing line. Thus the default value will usually be
adequate. In special cases, however, you may need to adjust the footer height more precisely
to your actual requirements.

Example: Suppose you need to place a two-line copyright notice in the footer. Although
there is no test in TEX itself to check the space available for the footer, exceeding
the designated height will likely result in unbalanced distribution of type area and
margins. Moreover, a package such as scrlayer-scrpage, which can be used to define
such a footer, performs the appropriate test and will report any overruns. So it
makes sense to specify the required footer height when calculating of the type area:

\documentclass[adpaper] {article}
\usepackage [footlines=2.1]{typearea}

Again, if you use a KOMA-Script class, you should pass this option directly to the
class:

\documentclass[footlines=2.1]{scrartcl}

Commands that can be used to define the contents of a two-line footer are described
in chapter 5.

Chapter 2: Calculating the Page Layout with typearea

In some cases it is useful to be able to specify the footer height not in lines but directly as
a length. This is accomplished with the alternative option footheight. All lengths and sizes
that IATEX understands are valid for height. Note, however, that if you use a ITEX length
such as \baselineskip, its value is not fixed at the time the option is set. The value that
will be used will be the one current at the time the type area and margins are calculated.
Also, IATEX lengths like \baselineskip should never be used in the optional argument of
\documentclass or \usepackage.

Please be sure to note that these options must be passed as class options when using one
of the KOMA-Script classes, or after loading the class with \KOMAoptions or \KOMAoption.
Changing these options after loading typearea does not automatically recalculate the type
area. Instead, the changes only take effect the next time the type area is recalculated. For
recalculation of the type area, see the DIV option with the values last or current (see page 37)
or the \recalctypearea command (see page 39).

\areaset [BCOR]1{width}{height}

So far, we have seen how to create a nice type area for standard situations and how the
typearea package makes it easier to accomplish this while still giving the freedom to adapt
the layout. However, there are cases where the text body has to adhere precisely to specific
dimensions. At the same time, the margins should be distributed as nicely as possible and,
if necessary, a binding correction should be taken into account. The typearea package offers
the command \areaset for this purpose. This command takes as parameters the width and
height of the text body, as well as the binding correction as an optional parameter. The width
and position of the margins are then calculated automatically, taking account of the options
headinclude, headinclude=false, footinclude and footinclude=false where needed. On
the other hand, the options headlines, headheight, footlines, and footheight are ignored!
For more information, see \areaset on page 472 of section 20.1.

The default for BCOR is Opt. If you want to preserve the current binding correction, for
example the value set by option BCOR, you can use the symbolic value current at an optional
argument.

Example: Suppose a text on A4 paper needs a width of exactly 60 characters in a typewriter
font and a height of exactly 30 lines per page. You can accomplish this with the
following preamble:

\documentclass [adpaper,1ipt]{article}
\usepackage{typearea}

\newlength{\CharsLX}/ Width of 60 characters
\newlength{\LinesXXX}/ Height of 30 lines
\settowidth{\CharsLX}{\texttt{1234567890}}
\setlength{\CharsLX}{6\CharsLX}
\setlength{\LinesXXX}{\topskip}
\addtolength{\LinesXXX}{29\baselineskip}

Chapter 2: Calculating the Page Layout with typearea

\areaset{\CharsLX}{\LinesXXX}

The factor is 29 rather than 30 because the baseline of the topmost line of text
is \topskip below the top margin of the type area, as long as the height of the
topmost line is less than \topskip. So we don’t need to add any height for the
first line. The descenders of characters on the lowermost line, on the other hand,
protrude below the dimensions of the type area.

To set a book of poetry with a square text area with a side length of 15cm and a
binding correction of 1cm, the following is possible:

\documentclass{poetry}
\usepackage{typearea}
\areaset [1cm] {15cm}{15cm}

DIV=areaset

In rare cases it is useful to be able to realign the current type area. This is possible with the
option DIV=areaset, where \KOMAoptions{DIV=areaset} corresponds to the

\areaset [current] {\textwidth}{\textheight}

command. The same result is obtained if you use DIV=1ast and the typearea was last set with
\areaset.

If you have concrete specifications for the margins, typearea is not suitable. In this case,
you should use the geometry package (see [Umel0]).

2.7. Selecting the Paper Size

The paper size is a key feature of a document. As already mentioned in the description of
the supported page layout constructions (see section 2.1 to section 2.3 starting on page 27),
the layout of the page, and hence the entire document, depends on the paper size. Whereas
the IATEX standard classes are limited to a few formats, KOMA-Script supports even unusual
paper sizes in conjunction with the typearea package.

paper=stize
paper=orientation

The paper option is the central element for paper-size selection in KOMA-Script. Size sup-
ports the American formats letter, legal, and executive. In addition, it supports the ISO
formats of the series A, B, C, and D, for example A4 or — written in lower case — a4.
Landscape orientations are supported by specifying the option one more time with the value
landscape or seascape. The only difference between landscape and seascape is that that
the application dvips rotates landscape pages by -90°, while it rotates seascape pages by
4+90°. Thus seascape is particularly useful whenever a PostScript viewer shows landscape

Chapter 2: Calculating the Page Layout with typearea

pages upside-down. In order for the difference to have an effect, you must not deactivate the
pagesize option described below.
v3.01b Additionally, the size can also be specified either in the form width : height or in the form
E height :width. Which value is taken as the height and which as the width depends on the
orientation of the paper. With paper=landscape or paper=seascape, the smaller value is
the height and the larger one is the width. With paper=portrait, the smaller value is the
width and the larger one is the height.

Note that until version 3.01a the first value was always the height and the second one the
width. From version 3.01b through version 3.21, the first value was always the width and
the second one the height. This is important if you use compatibility settings (see option
version, section 2.5, page 32).

Example: Suppose you want to print an ISO-AS8 index card in landscape orientation. The
margins should be very small and no header or footer will be used.

\documentclass{article}

\usepackage [headinclude=false,footinclude=false,
paper=A8,landscape] {typearea}

\areaset{7cm}{5cm}

\pagestyle{empty}

\begin{document}

\section*{Supported Paper Sizes}

letter, legal, executive, a0, al \dots\ 7

b0, bl \dots\ cO0, c1 \dots\ dO, di1 \dots

\end{document}

If the file cards have the special format (height:width) 5cm:3cm, this can be
achieved using the following:

\documentclass{article}

\usepackage [headinclude=false,footinclude=false, /
paper=landscape,paper=5cm:3cm] {typearea}

\areaset{4cm}{2.4cm}

\pagestyle{empty}

\begin{document}

\section*{Supported Paper Sizes}

letter, legal, executive, a0, al \dots\ /

b0, bl \dots\ cO0, cl1 \dots\ 40, d1 \dots

\end{document}

By default, KOMA-Script uses A4 paper in portrait orientation. This is in contrast to the
standard classes, which by default use the American letter paper format.

Please note that these options must be passed as class options when using one of the KOMA -
Script classes, or after loading the class with \KOMAoptions or \KOMAoption. Changing the

Chapter 2: Calculating the Page Layout with typearea

paper size or orientation with \KOMAoptions or \KOMAoption does not automatically recal-
culate the type area. Instead, the changes only take effect the next time the type area is
recalculated. For recalculation of the type area, see the DIV option with the values last or
current (see page 37) or the \recalctypearea command (see page 39).

pagesize=output driver

The above-mentioned mechanisms for choosing the paper format only affect the output insofar as
internal IATEX lengths are set. The typearea package then uses them in dividing the page into type
area and margins. The specification of the DVI formats, however, does not include any indication
of paper size. When outputting directly from the DVI format to a low-level printer language such as
PCL! or ESC/P22 or ESC/P—R3, this is usually not an issue, since with these formats the reference
zero-position is at the top left, as in DVI. But nowadays, the output is normally translated into
languages such as PostScript or PDF, in which the zero-position is at a different point, and in
which the paper format should be specified in the output file, which is missing this information. To
solve this problem, the corresponding driver uses a default paper size, which the user can change
either by an option or by specifying it in the TEX source file. When using the DVI driver dvips or
dvipdfm, the information can be given in the form of a \special command. When using pdfTEX,
luaTEX, X3TEX or VTEX their paper-size lengths are set appropriately.

With the pagesize option, you can select an output driver for writing the paper size into
the destination document. Supported output drivers are listed at table 2.6. The default is
pagesize. Using this option without providing a value is equivalent to pagesize=auto.

Example: Suppose a document should be available both as a DVI data file and in PDF format
for on-line viewing. The preamble might begin as follows:

\documentclass{article}
\usepackage [paper=A4,pagesize] {typearea}

If the pdfTEX engine is used and PDF output is enabled, the lengths \pdfpagewidth
and \pdfpageheight are set appropriately. If, however, a DVI data file is created —
whether by IMTEX or by pdfI&TEX —then a \special is written at the start of this
data file.

If you use an older version of typearea, you should always specify the pagesize option, because
older versions of typearea did not set them by default. As a rule, the method without an output
driver or with auto or automedia is convenient.

'PCL is a family of printer languages that HP uses for its inkjet and laser printers.
2ESC/P2 is the printer language that EPSON uses for its dot-matrix, and older inkjet or laser printers.
SESC/P-R is the printer language that EPSON currently uses for inkjet and laser printers.

Chapter 2: Calculating the Page Layout with typearea

Table 2.6.: Output driver for option pagesize=output driver

auto
Uses output driver pdftex if the pdfTEX-specific lengths \pdfpagewidth and
\pdfpageheight or the luaTEX-specific lengths \pagewidth and \pageheight are
defined. In addition, the output driver dvips will also be used. This setting is in
principle also suitable for XqTEX.

automedia
Almost the same as auto but if the VTEX-specific lengths \mediawidth and
\mediaheight are defined, they will be set as well.

false, no, off
Does not set any output driver and does not send page size information to the output

driver.
dvipdfmx
Writes the paper size into DVI files using \special{pagesize=width ,height}.

The name of the output driver is dvipdfmx because the application dvipdfmx handles
such specials not just in the preamble but in the document body too.

dvips
Using this option in the preamble sets the paper size using \special
{pagesize=width ,height}. Since the dvips driver cannot handle changes of paper
size in the inner document pages, a hack is required to achieve such changes. Use
changes of paper size after \begin{document} at your own risk, if you are using

dvips!
pdftex, luatex
Sets paper size using the pdfTEX-specific lengths \pdfpagewidth and

\pdfpageheight or the luaTEX-specific lengths \pagewidth and \pageheight. You
can do this at any time in your document.

2.8. Tips

For theses and dissertations, many rules exist that violate even the most elementary rules
of typography. The reasons for such rules include the typographical incompetence of those
who issue them, but also the fact that they were originally meant for mechanical typewriters.
With a typewriter or a primitive text processor from the early 1980s, it was not possible to
produce typographically correct output without extreme effort. So rules were created that
appeared to be easy to follow and were still accommodating to a proofreader. These include
margins that lead to usable line lengths for one-sided printing with a typewriter. To avoid
extremely short lines, which are made worse by unjustified text, the margins were kept narrow
and the leading was increased to 1.5 lines to allow space for corrections. Before the advent of

Chapter 2: Calculating the Page Layout with typearea

modern text processing systems, single spacing would have been the only alternative —except
with TgX. In such a single-spaced document, even correction signs would have been difficult
to add. When computers became more widely available for text processing, some students
showed their playful side and tried to spice up their work by using an ornamental font to make
their work look better than it really was. They did not consider that such fonts are often more
difficult to read and therefore unsuitable for this purpose. Thus, two font families found their
way into the regulations which are neither compatible nor particularly suitable for the job in
the case of Times. Times is a relatively narrow typeface designed at the beginning of the 20th
century for the narrow columns of British newspapers. Modern versions usually are somewhat
improved. But still the Times font, which is often required, does not really fit the prescribed
margins.

ETEX already uses adequate line spacing, and the margins are wide enough for corrections.
Thus a page will look spacious, even when quite full of text.

Often these typographically questionable rules are difficult to implement in ITEX. A fixed
number of characters per line can be achieved only when a non-proportional font is used.
There are very few good non-proportional fonts available. Hardly any text typeset in this way
looks really good. In many cases font designers try to increase the serifs on the ‘i’ or ‘I’ to
compensate for the different character widths. This does not work and results in a fragmented
and agitated-looking text. If you use ITEX for your thesis, some of these rules have to be
either ignored or at least interpreted generously. For example, “60 characters per line” can be
interpreted not as a fixed but as an average or maximum value.

As implemented, typesetting rules are usually intended to obtain a useful result even if
the author does not know what needs to be considered. Useful frequently means readable
and correctable. In my opinion the type area of a text set with IATEX and the typearea
package meets these criteria well from the outset. So if you are confronted with regulations
which deviate substantially from it, I recommend that you present a sample of the text to
your advisor and ask whether you can submit the work despite deviations in the format. If
necessary the type area can be adapted somewhat by changing the DIV option. I advise against
using \areaset for this purpose, however. In the worst case, use the geometry package (see
[Umel0]), which is not part of KOMA-Script, or change the page layout parameters of BTEX
yourself. You can find the values as determined by typearea in the log file of your document.
The usegeometry option, which you can find in part II, can also improve the interactions
between typearea and geometry. This should allow modest adjustments. However, make sure
that the proportions of the text area match those of the page, taking the binding correction
into account.

If it is absolutely necessary to set the text with a line spacing of 1.5, do not under any
circumstances redefine \baselinestretch. Although this procedure is recommended all too
frequently, it has been obsolete since the introduction of IITREX 2¢ in 1994. In the worst case,
use the \linespread command. I recommend the package setspace (see [TF'11]), which is not
part of KOMA-Script. You should also let typearea recalculate a new type area after changing

Chapter 2: Calculating the Page Layout with typearea

the line spacing. However, you should switch back to the normal line spacing for the title,
and preferably for the table of contents and various lists — as well as the bibliography and the
index. For details, see the explanation of DIV=current.

The typearea package, even with option DIV=calc, calculates a very generous text area.
Many conservative typographers will find that the resulting line length is still excessive. The
calculated DIV value may be found in the log file for each document. So you can easily choose
a smaller value after the first INTEX run.

Not infrequently I am asked why I dwell on type area calculations for an entire chapter, when
it would be much easier just to provide a package with which you can adjust the margins as in
a word processor. Often it is said that such a package would be a better solution in any case,
since everyone knows how to choose appropriate margins, and that the margins calculated
by KOMA-Script are not that good anyway. I would like to quote Hans Peter Willberg and
Friedrich Forssmann, two of the most respected contemporary typographers [WF00]. (You
can find the original German in the German guide.)

The practice of doing things oneself has long been widespread, but the results are
often dubious because amateur typographers do not see what is wrong and cannot
know what is tmportant. This is how you get used to incorrect and poor typography.
[...] Now the objection could be made that typography is a matter of taste. When it
comes to decoration, one could perhaps accept that argument, but since typography
is primarily about information, not only can mistakes irritate, but they may even
cause damage.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

The Main Classes: scrbook, scrreprt, and scrartcl

The main classes of the KOMA-Script bundle are designed as counterparts to the standard
ITEX classes. This means that the KOMA-Script bundle contains replacements for the three
standard classes, book, report, and article. There is also a replacement for the standard letter
class. The document class for letters is described in a separate chapter because it is funda-
mentally different from the three main classes (see chapter 4).

The simplest way to use a KOMA-Script class instead of a standard one is to substitute
the class name in the \documentclass command in accordance with table 3.1. For example,
you can replace \documentclass{book} with \documentclass{scrbook}. Normally, IATEX
should process the document without errors, just as before the substitution. The layout,
however, should be different. Additionally, the KOMA-Script classes provide new possibilities
and options that are described in the following sections.

However, it should be noted here that some package authors develop their packages based
on the implementation and even internal code of the standard classes, without regard to
completely independent developments like the KOMA-Script classes. In such cases, the first
TEX run after the change may well result in error messages or additional warnings. These
can usually be corrected in a simple way. Often the extended capabilities of KOMA-Script can
be used for this purpose, which completely eliminates the problematic package. Sometimes
the package scrhack documented in chapter 16 starting on page 413 can also help. Replacing
obsolete packages with current successors can also help to eliminate such problems. Sometimes
even the KOMA-Script classes provide warnings to help solve incompatibilities.

Let me say something before describing the classes. When beginning to write a document,
you are often unsure which specific options to choose. Some settings, for instance the choice of
paper size, may be fixed in advance. But even the question of the appropriate page layout could
be difficult to answer initially. On the other hand, these settings should be nearly irrelevant,
in the beginning, to the main business of an author: planning the document structure, writing
the text, preparing figures, tables, lists, index, and other data. As an author, you should
concentrate initially on the content. When that is done, you can take on the fine points
of presentation. In addition to the choice of options, this includes correcting hyphenation,
optimizing page breaks, and placing tables and figures.

Table 3.1.: Correspondence between standard classes and

KOMA-Script classes standard class KOMA-Script class
article scrartcl
report scrreprt
book scrbook

letter scrlttr2

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

3.1. Early or Late Selection of Options

The information in section 2.4 applies equally to this chapter. So if you have already read and
understood section 2.4, you can skip ahead to section 3.2, page 55.

\documentclass[option list]{KOMA-Script class?}
\usepackage [option list]{package list}

TEX allows users to pass class options as a comma-separated list of keywords in the optional
argument to \documentclass. In addition to being passed to the class, these options are also
passed on to all packages that can understand them. Users can also pass a similar comma-
separated list of keywords in the optional argument of \usepackage. KOMA-Script extends
the option mechanism for the KOMA-Script classes and some packages with further options.
Thus most KOMA-Script options can also take a value, so an option does not necessarily
take the form option, but can also take the form option=value. Except for this difference,
\documentclass and \usepackage in KOMA-Script function as described in [Tea05b] or any
introduction to WIEX, for example [OPHS11].

When using a KOMA-Script class, you should not specify options when loading the typearea
or scrbase packages. The reason for this restriction is that the class already loads these
packages without options, and IMTEX refuses to load a package multiple times with different
option settings. In general, it is not necessary to load either one of these packages explicitly
when using any KOMA-Script class.

Setting the options with \documentclass has one major disadvantage: unlike the interface
described below, the options in \documentclass are not robust. So commands, lengths,
counters, and similar constructs may break inside the optional argument of this command.
For example, with many non-KOMA-Script classes, using a IXTEX length in the value of an
option results in an error. So if you want to use a ITEX length, counter, or command as part
of the value of an option, you should use \KOMAoptions or \KOMAoption. These commands
will be described next.

\KOMAoptions{option list}
\KOMAoption{option}{value list}

KOMA-Script also provides the ability to change the values of most class and package options
even after loading the class or package. You can use the \KOMAoptions command to change
the values of a list of options, as in \documentclass or \usepackage. Each option in the
option list has the form option=value.

Some options also have a default value. If you do not specify a value, that is if you give the
option simply as option, then this default value will be used.

Some options can have several values simultaneously. For such options, it is possible, with
the help of \KOMAoption, to pass a list of values to a single option. The individual values
are given as a comma-separated value list.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

KOMA-Script uses the commands \FamilyOptions and \FamilyOption with the family
“KOMA" to implement this ability. See part I, section 12.2, page 340.

Options set with \KOMAoptions or \KOMAoption will reach both the KOMA-Script class
and any previously loaded KOMA-Script packages that recognise these options. If an option
or a value is unknown, scrbase will report it as an error.

3.2. Compatibility with Earlier Versions of KOMA -Script

The information in section 2.5 applies equally to this chapter. So if you have already read and
understood section 2.5 you can skip ahead to page 56, page 56.

Those who produce their documents from source code typically attach the utmost impor-
tance to the fact that future ITEX runs will yield exactly the same result. In some cases,
however, improvements and bug fixes to the class will result in changes of behaviour, especially
to the layout. This, however, may be undesirable.

version=value
version=first
version=last

Since Version 2.96a, KOMA-Script has been able to choose whether the source file should, as
much as possible, continue to produce exactly the same result within a IXTEX run or should
be formatted according to the modifications of the latest version of the class. You can specify
the version with which you want your file to be compatible by using the version option.
Compatibility with the oldest supported KOMA-Script version can be achieved with version=
first or version=2.9 or version=2.9t. Setting value to an unknown release number will
result in a warning message and selects version=first for safety.

With version=1last, you can select the latest version. In this case, you give up backwards
compatibility. If the option is used without a value, last is assumed. This also corresponds
to the default setting, as long as you do not use any deprecated options.

If you use a deprecated option of KOMA-Script 2, KOMA-Script 3 will switch to version=
first automatically. This will also result in a warning message that explains how to prevent
this switch. Alternatively, you can choose a different setting for version with the desired
compatibility after the deprecated option.

Compatibility is primarily a question of line and page breaks (wrapping). If you choose
compatibility with an older version, new options that do not affect wrapping are still avail-
able. The version option does not affect any wrapping changes that are the result of fixing
unambiguous errors. If you need unconditional wrapping compatibility even in the case of
bugs, you should physically save the old KOMA-Script version you need together with your
document.

Note that you cannot change the version option after loading the class. Setting this option
with \KOMAoptions or \KOMAoption will therefore cause an error.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

3.3. Draft Mode

Many classes and packages provide a draft mode in addition to the normal typesetting mode.
The differences between these two are as diverse as the classes and packages that offer this
distinction.

draft=simple switch
overfullrule=simple switch

The draft option distinguishes between documents being drafted and finished documents.
The simple switch can be one of the standard values for simple switches from table 2.5,
page 41. If you activate this option, small black boxes will be output at the end of overly
long lines. These boxes make it easier for the untrained eye to locate the paragraphs that
require manual post-processing. By contrast, the default, draft=false, shows no such boxes.
Incidentally, such lines often disappear when you use the microtype package [Sch13].

Since the draft option can lead to all sorts of unwanted effects with various packages,
KOMA-Script allows you to control this marking of overly long lines separately with the
overfullrule option. If this option is enabled, the marker is again displayed.

3.4. Page Layout

Each page of a document consists of different layout elements, such as the margins, the header,
the footer, the text area, the marginal note column, and the distances between these elements.
KOMA-Script additionally distinguishes the entire page, also known as the paper, and the
visible page. Without doubt, the separation of the page into these different parts is one of
the basic features of a class. KOMA-Script delegates this work to the package typearea. This
package can also be used with other classes. The KOMA-Script classes, however, load typearea
on their own. Therefore, it’s neither necessary nor sensible to load the package explicitly with
\usepackage while using a KOMA-Script class. See also section 3.1, page 54.

Some settings of KOMA-Script classes affect the page layout and vice versa. Those effects
are documented at the corresponding settings.

For more information about the choice of paper format, the division of the page into margins
and type area, and the choice between one- and two-column typesetting, see the documentation
for the typearea package. You can find it in chapter 2, starting on page 27.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\flushbottom
\raggedbottom

In two-sided documents especially, it is preferable to have the same visual baseline not only for the
first lines of each text area in a two-page spread but also for the last lines. If a page consists only of
text without paragraphs or headings, this is generally the result. But a paragraph spacing of half a
line would be enough to prevent you from achieving this goal if the number of paragraphs on each
page of the two-page spread differs by an odd number. In this case, at least some of the paragraph
distances need to be stretched or shrunk to reach the target again. TEX defines stretchable and
shrinkable distances for this purpose, and IATEX lets you perform this kind of vertical adjustment
automatically.

Using two-sided printing with the twoside option (see section 2.4, page 40) or two-column
formatting with the twocolumn option (see page 41) also activates this vertical adjustment.
But this does not apply with a compatibility setting for a KOMA-Script version prior to 3.17
(see section 3.2, page 55, option version) if you use \KOMAoption or \KOMAoptions to change
the setting of these options.

You can also explicitly request vertical adjustment at any time starting with the current
page by using \flushbottom. \raggedbottom has the opposite effect, switching off vertical
adjustment starting with the current page. This corresponds to the default for one-sided
printing.

By the way, KOMA-Script uses a slightly modified method for adjusting the vertical skip.
This has been done to move footnotes to the bottom of the text area instead of having them
close to the last text line used.

3.5. Choosing the Document Font Size

The main font and its size are central elements in the design of a document. As stated in
chapter 2, the division of the page into the text area and the margins fundamentally depends
on them. The main font is the one that is used for most of the text in a document. All
variations, whether in shape, thickness, slant, or size, are related to the main font.

fontsize=size

While the standard classes support only a very limited number of font sizes, KOMA-Script
provides the ability to specify any size for the main font. You can also use any known
TEXunit as a unit for the size. If the size is specified without a unit, it is assumed to be
pt.

If you set the option within the document, the main font size and the dependent font sizes of
the commands \tiny, \scriptsize, \footnotesize, \small, \normalsize, \large, \Large,
\LARGE, \huge and \Huge are changed. This can be useful, for example, if you want the
appendix to be set in a smaller font size.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Note that using this option after loading the class does not automatically recalculate the type
area and margins (see \recalctypearea, section 2.6, page 39). However, if this recalculation
is performed, it will be based on the current main font size. The effects of changing the main
font size upon other loaded packages or the class used depends on these packages and on the
class. This means that you can encounter errors which are not the fault of KOMA-Script, and
even the KOMA-Script classes themselves do not recalculate all lengths if the main font size
changes after loading the class.

This option should by no means be misinterpreted as a substitute for \fontsize (see
[Tea05al). Also, you should not use it in place of one of the font size commands that are
relative to the main font, from \tiny to \Huge. The use within a paragraph is therefore also
explicitly prohibited.

The default for scrbook, scrreprt, and scrartcl is fontsize=11pt. In contrast, the default
size in the standard classes is 10pt. You may need to account for this difference if you switch
from a standard class to a KOMA-Script class.

3.6. Text Markup

TEX offers different possibilities for logical and direct markup of text. In addition to the
choice of the font, this includes commands for choosing the font size and orientation. For
more information about the standard font facilities, see [OPHS11], [Tea05b], and [Tea0b5al.

sfdefaults=simple switch
\maybesffamily
\textmaybesf{text}

The \maybesffamily and \textmaybesf commands behave differently depending on the set-
ting of option sfdefaults. One of the default values for simple switches from table 2.5
can be used here. Only if this option is enabled will \maybesffamily result in \sffamily
and \textmaybesf use \textsf. This is also the default setting. KOMA-Script itself uses
\maybesffamily in the default settings of elements descriptionlabel, disposition, and
dictum. \maybesffamily may thus also be used as part of the commands of the \setkomafont
and \addtokomafont statements explained below.

\setkomafont{element }{commands}
\addtokomafont{element }{commands }
\usekomafont{element}

With the help of the \setkomafont and \addtokomafont commands, you can attach particular
font styling commands that change the appearance of a given element. Theoretically, all state-
ments, including literal text, can be used as commands. You should, however, limit yourself
to those statements that really change font attributes only. These are usually commands like
\rmfamily, \sffamily, \ttfamily, \upshape, \itshape, \slshape, \scshape, \mdseries,

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\bfseries, \normalfont, as well as the font size commands \Huge, \huge, \LARGE, \Large,
\large, \normalsize, \small, \footnotesize, \scriptsize, and \tiny. You can find these
commands explained in [OPHS11], [Tea05b], or [Tea05a]. Colour switching commands like
\normalcolor (see [Carl7] and [Ker(7]) are also acceptable. The use of other commands, in
particular those that redefine things or or lead to output, is not supported. Strange behaviour
is possible in these cases and does not represent a bug.

The command \setkomafont provides an element with a completely new definition of its
font styling. In contrast, the \addtokomafont command merely extends an existing definition.
You should not use either command inside the document body but only in the preamble. For
examples of their use, refer to the sections for the respective element. The name and meaning
of each element are listed in table 3.2 . The default values can be found in the corresponding
sections.

With the \usekomafont command, the current font style can be changed to the one defined
for the specified element.

Example: Suppose you want to use the same font specification for the element captionlabel
that is used with descriptionlabel. This can be easily done with:

\setkomafont{captionlabel}{/
\usekomafont{descriptionlabel}/

3

You can find other examples in the explanation of each element.

Table 3.2.: Elements whose font style can be changed in scrbook, scrreprt or scrartcl with \setkomafont
and \addtokomafont

author
author of the document in the title, i. e., the argument of \author when \maketitle
is used (see section 3.7, page 67)

caption
text of a figure or table caption (see section 3.20, page 131)

captionlabel
label of a figure or table caption; applied in addition to the caption element (see
section 3.20, page 131)

chapter
title of the sectioning command \chapter (see section 3.16, page 101)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

chapterentry
table of contents entry for the sectioning command \chapter (see section 3.9,
page 75)

chapterentrydots
optional points connecting table-of-content entries for the \chapter level, differing
from the chapterentry element, \normalfont and \normalsize (see section 3.9,
page 75)

chapterentrypagenumber
page number of the table of contents entry for the sectioning command \chapter,
differing from the element chapterentry (see section 3.9, page 75)

chapterprefix
label, e. g., “Chapter”, appearing before the chapter number in both chapterprefix=
true and appendixprefix=true (see section 3.16, page 96)

date
date of the document in the main title, i. e., the argument of \date when \maketitle
is used (see section 3.7, page 67)

dedication
dedication page after the main title, i.e., the argument of \dedication when
\maketitle is used (see section 3.7, page 70)

descriptionlabel
labels, i.e., the optional argument of \item in the description environment (see
section 3.18, page 120)

dictum
dictum or epigraph (see section 3.17, page 116)

dictumauthor
author of a dictum or epigraph; applied in addition to the element dictum (see
section 3.17, page 116)

dictumtext

alternative name for dictum

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

disposition
all sectioning command titles, i.e., the arguments of \part down to \subparagraph
and \minisec, including the title of the abstract; applied before the element of the
respective unit (see section 3.16, page 94)

footnote
footnote text and marker (see section 3.14, page 90)

footnotelabel
marker for a footnote; applied in addition to the element footnote (see section 3.14,
page 90)

footnotereference
footnote reference in the text (see section 3.14, page 90)

footnoterule
horizontal rule above the footnotes at the end of the text area (see section 3.14,
page 93)

itemizelabel
Default for the preset symbols of the environment itemize (see section 3.18,
page 118)

labelinglabel
labels, i.e., the optional argument of \item in the labeling environment (see sec-
tion 3.18, page 121)

labelingseparator
separator, i.e., the optional argument of the 1abeling environment; applied in ad-
dition to the element labelinglabel (see section 3.18, page 121)

labelitemi
Font to be used in the item symbol definition \labelitemi (see section 3.18,
page 118)

labelitemii
Font to be used in the item symbol definition \labelitemii (see section 3.18,
page 118)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

labelitemiii
Font to be used in the item symbol definition \labelitemiii (see section 3.18,
page 118)

labelitemiv
Font to be used in the item symbol definition \labelitemiv (see section 3.18,
page 118)

minisec
title of \minisec (see section 3.16 ab page 106)

pagefoot
only used if package scrlayer-scrpage has been loaded (see chapter 5, page 264)

pagehead
alternative name for pageheadfoot

pageheadfoot
the header and footer of a page (see section 3.12 from page 80)

pagenumber
page number in the header or footer (see section 3.12)

pagination
alternative name for pagenumber

paragraph
title of the sectioning command \paragraph (see section 3.16, page 101)

part
title of the \part sectioning command, without the line containing the part number
(see section 3.16, page 101)

partentry

table of contents entry for the sectioning command \part (see section 3.9, page 75)

partentrypagenumber
page number of the table of contents entry for the sectioning command \part; applied
in addition to the element partentry (see section 3.9, page 75)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

partnumber
line containing the part number in a title of the sectioning command \part (see
section 3.16, page 101)

publishers
publishers of the document in the main title, i.e., the argument of \publishers
when \maketitle is used (see section 3.7, page 67)

section
title of the sectioning command \section (see section 3.16, page 101)

sectionentry
table of contents entry for sectioning command \section (only available in scrartcl,
see section 3.9, page 75)

sectionentrydots
optional points connecting table-of-content entries for the \section level, differing
from the sectionentry element, \normalfont and \normalsize (only available in
scrartcl, see section 3.9, page 75)

sectionentrypagenumber
page number of the table of contents entry for the sectioning command \section; ap-
plied in addition to element sectionentry (only available in scrartcl, see section 3.9,
page 75)

sectioning
alternative name for disposition

subject
topic of the document, i.e., the argument of \subject on the main title page (see
section 3.7, page 67)

subparagraph
title of the sectioning command \subparagraph (see section 3.16, page 101)

subsection
title of the sectioning command \subsection (see section 3.16, page 101)

subsubsection
title of the sectioning command \subsubsection (see section 3.16, page 101)

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.2.: Elements whose font style can be changed (continued)

subtitle
subtitle of the document, i.e., the argument of \subtitle on the main title page
(see section 3.7, page 67)

title
main title of the document, i. e., the argument of \title (for details about the title
size see the additional note in the text of section 3.7 from page 67)

titlehead
heading above the main title of the document, i.e., the argument of \titlehead
when \maketitle is used (see section 3.7, page 67)

\usefontofkomafont{element }
\useencodingofkomafont{element
\usesizeofkomafont{element }
\usefamilyofkomafont{element}
\useseriesofkomafont{element }
\useshapeofkomafont{element }

Sometimes, although this is not recommended, the font setting of an element is used for
settings that are not actually related to the font. If you want to apply only the font setting
of an element but not those other settings, you can use \usefontofkomafont instead of
\usekomafont. This will activate the font size and baseline skip, the font encoding, the font
family, the font series, and the font shape of an element, but no further settings as long as
those further settings are local.

You can also switch to a single one of those attributes using one of the other commands.
Note that \usesizeofkomafont uses both the font size and the baseline skip.

However, you should not take these commands as legitimizing the insertion of arbitrary
commands in an element’s font setting. To do so can lead quickly to errors (see section 21.5,
page 479).

3.7. Document Titles

In general, we distinguish two kinds of document titles. First, there are title pages. These
include title of the document, together with additional information such as the author, on a
separate page. In addition to the main title page, there may be several other title pages, such
as the half-title or bastard title, publisher data, dedication, and so on. Second, there is the
in-page title. This kind of title appears at the top of a new page, usually the first, and is

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

specially emphasized. It too may be accompanied by additional information, but it will be
followed by more material on the same page, for example by an abstract, the table of contents,
or even a section.

titlepage=simple switch
titlepage=firstiscover
\coverpagetopmargin
\coverpageleftmargin
\coverpagerightmargin
\coverpagebottommargin

This option determines whether to use document title pages or in-page titles when using
\maketitle (see page 66). Any value from table 2.5, page 41 can be used for simple switch.
With the titlepage=true or titlepage option, invoking \maketitle creates titles on
separate pages. These pages are set inside a titlepage environment, and they normally have
neither header nor footer. Compared to standard KTEX, KOMA-Script significantly expands
the handling of the titles. These additional elements can be found on the following pages.

In contrast, with the titlepage=false option, invoking \maketitle creates an in-page
title. This means that the title is specially emphasized, but it may be followed by more
material on the same page, for instance an abstract or a section.

The third choice, titlepage=firstiscover not only activates title pages but also prints
the first title page of \maketitle, i.e. either the half-title or the main title, as a cover page.
Any other setting of the titlepage option will cancel this setting. The margins of the cover
page are given by \coverpagetopmargin, \coverpageleftmargin, \coverpagerightmargin,
and \coverpagebottommargin. The defaults of these depend on the lengths of \topmargin
and \evensidemargin and can be changed with \renewcommand.

The default of the scrbook and scrreprt classes is to use title pages. The scrartcl class, on
the other hand, uses in-page titles by default.

\begin{titlepage}...\end{titlepage}

The standard classes and KOMA-Script set all title pages in a special environment: the
titlepage environment. This environment always starts a new page —in two-sided printing
a new right-hand page—and in single-column mode. For this page, the style is changed to
\thispagestyle{empty}, so that neither page number nor running head is output. At the
end of the environment, the page is automatically shipped out. Should you not be able to use
the automatic layout of the title pages provided by \maketitle, described next, you should
design a new one with the help of this environment.

Example: Suppose you want a title page on which only the word “Me” stands at the top on
the left, as large as possible and in bold —no author, no date, nothing else. The
following document creates just that:

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\documentclass{scrbook}
\begin{document}
\begin{titlepage}
\textbf{\Huge Me}
\end{titlepage}
\end{document}

It’s simple, isn’t it?

\maketitle[page number]

While the standard classes produce at most one title page that can have three items (title,
author, and date), with KOMA-Script \maketitle can produce up to six pages. In contrast
to the standard classes, \maketitle in KOMA-Script accepts an optional numeric argument.
If it is used, this number is the page number of the first title page. This page number is not
output, but it affects the subsequent numbering. You should definitely choose an odd number,
because otherwise the whole count gets mixed up. In my opinion, there are only two useful
applications for the optional argument. On the one hand, you could give the the logical page
number -1 to the half-title in order to give the full title page the number 1. On the other hand,
you could use it to start at a higher page number, for example, 3, 5, or 7, to accommodate
other title pages added by the publishing house. The optional argument is ignored for in-page
titles. You can change the page style of such a title page by redefining the \titlepagestyle
macro (see section 3.12, page 83).

The following commands do not lead immediately to the ship-out of the titles. The typeset-
ting and ship-out of the title pages are always done by \maketitle. Note also that \maketitle
should not be used inside a titlepage environment. As shown in the examples, you should
use either \maketitle or titlepage, but not both.

The following commands only define the contents of the title. Therefore they must be used
before \maketitle. It is, however, not necessary and, when using the babel package not
recommended, to include these in the preamble before \begin{document} (see [BB13]). You
can find examples in the descriptions of the other commands in this section.

\extratitle{half-title}
\frontispiece{frontispiece’}

In earlier times the inner book was often not protected from dirt by a cover. This function was then
assumed by the first page of the book, which usually had just a short title, known as the half-title.
Nowadays the extra page often appears before the real main title and contains information about
the publisher, series number, and similar information.

With KOMA-Script, it is possible to include a page before the real title page. The
half-title can be arbitrary text —even several paragraphs. The contents of the half-title
are output by KOMA-Script without additional formatting. Their organisation is completely

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

left to the user. The verso of the half-title is the frontispiece. The half-title is set on its own
page even when in-page titles are used. The output of the half-title defined with \extratitle
takes place as part of the title produced by \maketitle.

Example: Let’s return to the previous example and suppose that the Spartan “Me” is the
half-title. The full title should still follow the half-title. You can proceed as follows:

\documentclass{scrbook}

\begin{document}
\extratitle{\textbf{\Huge Mel}}
\title{It’s me}
\maketitle

\end{document}

You can centre the half-title horizontally and put it a little lower down the page:

\documentclass{scrbook}
\begin{document}
\extratitle{\vspace*x{4\baselineskip}
\begin{center}\textbf{\Huge Me}\end{center}}
\title{It’s me}
\maketitle
\end{document}

The command \title is necessary in order to make the examples above work
correctly. It is explained next.

\titlehead{title head}
\subject{subject}
\title{title}
\subtitle{subtitle}
\author{author}
\date{date}
\publishers{publisher}
\and

\thanks{ footnote}

There are seven elements available for the content of the main title page. The main title page
is output as part of the title pages created by \maketitle, while the definitions given here
only apply to the respective elements.

The title head is defined with the command \titlehead. It occupies the entire text
width, at the top of the page, in normal justification, and it can be freely designed by the
user. It uses the font element with same name (see table 3.4, page 69).

The subject is output with the font element of the same name immediately above the
title.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.3.: Font defaults for

the elements of the title Element name Default
author \Large
date \Large
dedication \Large
publishers \Large
subject \normalfont\normalcolor\bfseries\Large
subtitle \usekomafont{title}\large
title \usekomafont{disposition}
titlehead

The title is set in a very large font size. Along with the font size, the font element title
is applied (see table 3.4, page 69).

The subtitle is set just below the title using the font element of the same name (see
table 3.4, page 69).

Below the subtitle appears the author. Several authors can be specified in the argument
of \author. They should be separated by \and. The output uses the font element of the same
name. (see table 3.4, page 69).

Below the author or authors appears the date in the font of the element of the same name.
The default value is the current date, as produced by \today. The \date command accepts
arbitrary information —even an empty argument. The output uses the font element of the
same name (see table 3.4, page 69).

Finally comes the publisher. Of course this command can also be used for any other
information of minor importance. If necessary, the \parbox command can be used to typeset
this information over the full page width like a regular paragraph instead of centring it. It
should then be considered equivalent to the title head. Note, however, that this field is placed
above any existing footnotes. The output uses the font element of the same name (see table 3.4,
page 69).

Footnotes on the title page are produced not with \footnote, but with \thanks. They serve
typically for notes associated with the authors. Symbols are used as footnote markers instead
of numbers. Note that \thanks has to be used inside the argument of another command, such
as in the author argument of the command \author.

For the output of the title elements, the font can be set using the \setkomafont and
\addtokomafont command (see section 3.6, page 58). The defaults are listed in table 3.3.

With the exception of title head and any footnotes, all output is centred horizontally
These details are briefly summarized in table 3.4.

Note that for the main title, \huge will be used after the font switching element title. So
you cannot change the size of the main title using \setkomafont or \addtokomafont.

Example: Suppose you are writing a dissertation. The title page should have the university’s

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.4.: Font and

horizontal positioning Element ~ Command Font Alignment
of the elements in the
main title page in the Title head \titlehead \usekomafont{titlehead} justified

order of their vertical — Subject \subject \usekomafont{subject} centred
position from top to Title \title \usekomafont{title}\huge centred
bottom when typeset Subtitle \subtitle \usekomafont{subtitle} centred
with \maketitle Authors \author \usekomafont{author} centred

Date \date \usekomafont{date} centred

Publishers \publishers \usekomafont{publishers} centred

name and address at the top, flush left, and the semester, flush right. As usual, a
title including author and submission date should be given. The adviser must also
be indicated, together with the fact that the document is a dissertation. You can
do this as follows:

\documentclass{scrbook}
\usepackage [english] {babel}
\begin{document}
\titlehead{{\Large Unseen University
\hfill SS~2002\\}

Higher Analytical Institute\\

Mythological Rd\\

34567 Etherworld}
\subject{Dissertation}
\title{Digital space simulation with the DSP\,56004}
\subtitle{Short but sweet?}
\author{Fuzzy George}
\date{30. February 2002}
\publishers{Adviser Prof. John Eccentric Doe}
\maketitle
\end{document}

A common misconception concerns the function of the full title page. It is often erroneously
assumed to be the cover or dust jacket. Therefore, it is frequently expected that the title page
will not follow the normal layout for two-sided typesetting but will have equally large left and right
margins.

But if you pick up a book and open it, you will quickly find at least one title page inside the
cover, within the so-called book block. Precisely these title pages are produced by \maketitle.

As is the case with the half-title, the full title page belongs to the book block, and therefore
should have the same page layout as the rest of the document. A cover is actually something that
you should create in a separate document. After all, it often has a very distinct format. It can
also be designed with the help of a graphics or DTP program. A separate document should also

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

be used because the cover will be printed on a different medium, such as cardboard, and possibly
with another printer.

Nevertheless, since KOMA-Script 3.12 the first title page issued by \maketitle can be for-
matted as a cover page with different margins. Changes to the margins on this page do not affect
the other margins. For more information about this option, see titlepage=firstiscover on
page 65.

\uppertitleback{titlebackhead}
\lowertitleback{titlebackfoot}

In two-sided printing, the standard classes leave the back (verso) of the title page empty.
However, with KOMA-Script the back of the full title page can be used for other informa-
tion. There are exactly two elements which the user can freely format: titlebackhead and
titlebackfoot. The header can extend to the footer and vice versa. Using this guide as an
example, the legal disclaimer was set with the help of the \uppertitleback command.

\dedication{dedication}

KOMA-Script offers its own dedication page. This dedication is centred and set by default
with a slightly larger font. The exact font setting for the dedication element, which is
taken from table 3.3, page 68, can be changed with the \setkomafont and \addtokomafont
commands (see section 3.6, page 58).

Example: Suppose you have written a book of poetry and want to dedicate it to your spouse.
A solution would look like this:

\documentclass{scrbook}
\usepackage [english] {babel}
\begin{document}
\extratitle{\textbf{\Huge In Lovel}}
\title{In Love}
\author{Prince Ironheart}
\date{1412}
\lowertitleback{This poem book was set with/
the help of {\KOMAScript} and {\LaTeX}}
\uppertitleback{Self-mockery Publishers}
\dedication{To my treasured hazel-hen\\
in eternal love\\
from your dormouse.}
\maketitle
\end{document}

Please use your own favourite pet names to personalize it.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrreprt,
scrartcl

scrartcl,
scrreprt

3.8. Abstract

Particularly with articles, more rarely with reports, there is an abstract, or summary, directly
beneath the title and before the table of contents. When using an in-page title, this abstract
is normally a kind of left- and right-indented block. In comparison, the abstract appears as a
chapter or section when using title pages.

abstract=simple switch

In the standard classes, the abstract environment sets the text “Abstract” centred before
the abstract text. This used to be the normal practice. Since then, reading newspapers has
trained us to recognize a suitably highlighted text at the beginning of an article or report as
the abstract. This is even more true when the text comes before the table of contents. It is also
confusing if, of all things, this title appears small and centred. KOMA-Script offers the option
to include or exclude the abstract’s title with the abstract option. For simple switch, you
can use any value from table 2.5, page 41. The default for KOMA-Script is false.

Books typically use a different kind of summary. There, you usually place an appropriate
chapter at the beginning or the end of the work. This chapter is often combined with either
the introduction or a description of a larger prospectus. Therefore, the scrbook class has no
abstract environment. A summary chapter is also recommended for reports in a wider sense,
such as a Master’s thesis or Ph.D. dissertation. See the commands \chapter*, \addchap, and
\addchap* documented in section 3.16, from page 105.

\begin{abstract}...\end{abstract}

Some KTEX classes provide a special environment for this summary: the abstract environ-
ment. This is output directly, so it is not part of the title created with \maketitle. Please
note that abstract is an environment, not a command. Whether the abstract has a heading
or not is determined by the abstract option (see above).

For books, the abstract is usually part of the introduction or a separate chapter at the end
of the document. Therefore scrbook does not provide an abstract environment. When using
the scrreprt class, it is definitely worth considering whether to proceed in the same way. See
the commands \chapter* and \addchap, or \addchapx* in section 3.16 from page 105 for more
on this.

When using an in-page title (see option titlepage, section 3.7, page 65), the abstract is set
internally using the quotation environment (see section 3.18, page 124). This way paragraphs
will be set with the first line indented. If the first paragraph of the abstract should not be
indented, you can suppress this indent by using \noindent just after \begin{abstract}.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

v3.00

3.9. Table of Contents

The title and optional abstract are normally followed by a table of contents. Often you also
find additional lists of the floating environments, such as tables and figures, after the table of
contents (see section 3.20).

In addition to the options documented in this section, the tocbasic package style selected and
configured with \DeclareTOCStyleEntry (see page 387) also has a significant impact on the
appearance of the table of contents. Similarly, the commands \DeclareSectionCommand,
\ProvideSectionCommand, \DeclareNewSectionCommand and \RedeclareSectionCommand
documented in section 21.8, page 481 can also affect the table of contents.

toc=setting

It is becoming increasingly common to include lists of tables and figures, the bibliography,
and sometimes even the index in the table of contents. This is surely related to the recent
trend of putting lists of figures and tables at the end of the document. Both lists are similar
to the table of contents in structure and intention. I'm therefore sceptical of this evolution.
Since it makes no sense to include only the list of tables or that of figures in the table of
contents without the other, there is only one setting listof, which causes entries for both
types of lists to be included. This also includes any lists produced with version 1.2e or later of
the float package from Version 1.2e (see [Lin01]) or floatrow (see [Lap08]). None of these lists
are generally given a chapter number. If you want to ignore this principle, use the setting
listofnumbered.

The toc=index option causes an entry for the index to be included in the table of contents.
The index is unnumbered since it too only includes references to the contents of the other
sectioning levels. Despite the author’s concerns, KOMA-Script does support deviating from
this principle with toc=indexnumbered.

The bibliography is a slightly different kind of listing. It does not list the contents of
the present document but refers instead to external sources. For that reason, it could be
argued that it qualifies as a chapter (or section) and, as such, should be numbered. The toc=
bibliographynumbered option has this effect, and puts the appropriate entry in the table
of contents. However, I think that this reasoning would lead us to consider even a classic,
annotated source list to be a separate chapter. Moreover, the bibliography is ultimately not
something that you wrote yourself. Therefore the bibliography merits, at best, an unnumbered
entry in the table of contents, and you can achieve this achieved with toc=bibliography.

The table of contents is normally formatted so that different levels of sectioning commands
have different indentations. The number for each level is set left-justified in a fixed-width field.
This default set-up is selected with the toc=graduated option.

If the sectioning level which appears in the table of contents is too deep, the number for
that level can be so wide that the space reserved for the number is insufficient. The German
FAQ [Wik] suggests redefining the table of contents in such a case. KOMA-Script offers an

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

alternative format that avoids the problem completely. If you use the toc=flat option, no
graduated indentation is applied to the headings of the sectioning levels. Instead, a table-
like organisation is used, where all sectioning numbers and headings are set in a left-justified
column. The space necessary for the section numbers is thus determined automatically.

You can find an overview of all available values for the setting of toc. in table 3.5.

Table 3.5.: Available values for the toc option to set the format and contents of the table of contents

bibliography, bib
The bibliography has an unnumbered entry in the table of contents.

bibliographynumbered, bibnumbered, numberedbibliography, numberedbib
The bibliography has a numbered entry in the table of contents.

chapterentrywithdots, chapterentrydotfill
The chapter entries for the scrbook and scrreprt classes also use dots to separate the
heading text from the page numbers.

chapterentrywithoutdots, chapterentryfill
The chapter entries of the scrbook and scrreprt classes use white space to separate
the heading text from the page numbers. This corresponds to the default setting.

flat, left
The table of contents is set in table form. The numbers of the headings are in the first
column, the heading text in the second column, and the page number in the third
column. The amount of space needed for the numbers of the headings is determined
by the required amount of space detected during the previous M TEX run.

graduated, indent, indented
The table of contents is set in hierarchical form. The amount of space for the heading
numbers is limited. This corresponds to the default setting.

indenttextentries, indentunnumbered, numberline
The numberline property (see section 15.2, page 384) is set for the table of contents.
As a result, unnumbered entries are left aligned with the text of numbered entries
of the same level.

index, idx
The index has an unnumbered entry in the table of contents.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

v3.18

v3.12

Table 3.5.: Available values for the toc option (continued)

indexnumbered, idxnumbered, numberedindex, numberedidx
The index has a numbered entry in the table of contents.

leftaligntextentries, leftalignunnumbered, nonumberline
The numberline property (see section 15.2, page 384) is deleted for the table of
contents. This places unnumbered entries left-aligned with the number of numbered
entries of the same level. This corresponds to the default setting.

listof
The lists of floating environments, e. g. figures and tables, have unnumbered entries
in the table of contents.

listofnumbered, numberedlistof
The lists of floating environments, e. g. figures and tables, have numbered entries in
the table of contents.

nobibliography, nobib
The bibliography does not have an entry in the table of contents. This corresponds
to the default setting.

noindex, noidx
The index does not have an entry in the table of contents. This corresponds to the
default setting.

nolistof
The lists of floating environments, e. g. figures and tables, do not have entries in the
table of contents. This corresponds to the default setting.

sectionentrywithdots, sectionentrydotfill
The section entries of the scrartcl class also use dots to separate the heading text
from the page numbers.

sectionentrywithoutdots, sectionentryfill
The section entries of the scrartcl class use white space to separate the heading text
from the page number. This corresponds to the default setting.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

scrartcl

v2.97c

chapterentrydots=simple switch
sectionentrydots=simple switch

These options configure a dotted connecting line between the text and page number of the
chapter entries for the scrbook and scrreprt classes, or for the section entries of the scrartcl
class, in the table of contents. For the simple switch, you can use any value from table 2.5,
page 41. The default is false. It selects an empty gap instead of dots.

If a dotted line is used, you can change its font using the element chapterentrydots or
sectionentrydots (see also \setkomafont and \addtokomafont, section 3.6, page 58, as well
as table 3.2, page 59). The defaults of the elements are shown in table 3.6, from page 76. Note
that the dots of all entries will be equally spaced only if all dots use the same font. Because of
this the base font is always \normalfont\normalsize and only the colour of chapterentry
or sectionentry is also used for the dots.

\tableofcontents

The table of contents is output by the \tableofcontents command. To get correct values
in the table of contents requires at least two IATEX runs after every change. The toc option
described above can also affect the extent and format of the table of contents. After changing
the settings of this option, at least two I4TEX runs are needed again.

Entries for \chapter with scrbook and scrreprt, or \section with scrartcl, and the sectioning
level \part are not indented. Additionally, there are no dots between the text of this heading
and the page number. The typographical logic for this behaviour is that the font is usually
distinct and appropriate emphasis is desirable. However, you can change this behaviour with
the previously documented options. The table of contents of this guide is created with the
default settings and serves as an example.

The font style of the top two levels in the table of contents is also affected by the settings
for the partentry element, as well as by the chapterentry element for the scrbook and
scrreprt classes, and by the sectionentry element for the scrartcl class. You can set the
font style of the page numbers separately from these elements using partentrypagenumber
and chapterentrypagenumber — for scrbook and scrreprt—or sectionentrypagenumber —
for scrartcl— (see \setkomafont and \addtokomafont in section 3.6, page 58, or table 3.2,
page 59). If you use dotted lines connecting the heading entries (chapter or section depending
on the class) to the page numbers using the toc chapterentrydots or sectionentrydots
option, you can change their font style using the chapterentrydots and sectionentrydots
elements. The defaults for these elements are found in table 3.6.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrartcl

Table 3.6.: Default font

styles for the elements of Element Default font style
the table of contents

partentry \usekomafont{disposition}\large
partentrypagenumber

chapterentry \usekomafont{disposition}
chapterentrydots \normalfont
chapterentrypagenumber

sectionentry \usekomafont{disposition}
sectionentrydots \normalfont

sectionentrypagenumber

tocdepth

\parttocdepth
\sectiontocdepth
\subsectiontocdepth
\subsubsectiontocdepth
\paragraphtocdepth
\subparagraphtocdepth

Normally, the sectioning divisions included in the table of contents are all those from \part
to \subsection for the scrbook and scrreprt classes, or from \part to \subsubsection for
the scrartcl class. Whether or not to include a sectioning level in the table of contents is
controlled by the tocdepth counter. This has the value -1 for \part, 0 for \chapter, and
so on. By incrementing or decrementing the counter, you can choose the lowest sectioning
level to include in the table of contents. Incidentally, the standard classes work the same
way. Unlike with the standard classes, with KOMA-Script you do not need to remember these
values. KOMA-Script defines a \ level tocdepth command for each sectioning level with the
appropriate value which you can use to set tocdepth.

Please note that in scrartcl, the values of tocdepth and secnumdepth (see section 3.16,
page 113) for \part are not the same. This behaviour was copied from the standard article
class for compatibility. Thus, for example, you should not use \partnumdepth to set the value
of tocdepth.

Example: Suppose you are preparing an article that uses the sectioning level \subsubsection.
However, you do not want this sectioning level to appear in the table of contents.
The preamble of your document might contain the following:

\documentclass{scrartcl}
\setcounter{tocdepth}{\subsectiontocdepth}

Thus you set the tocdepth counter to the value of the \subsectiontocdepth com-
mand. That value is normally 2, but this way, you do not have to remember it.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

If instead you simply want to include one less level in the table of contents than you
normally would, you can simply subtract one from the default value of tocdepth:

\documentclass{scrartcl}
\addtocounter{tocdepth}{-1}

The value that you need to add to or subtract from tocdepth is listed in the table
of contents after at least two ITEX runs.

3.10. Marking Paragraphs

The standard classes normally set paragraphs indented and without any vertical, inter-
paragraph space. This is the best solution when using a regular page layout like the ones
produced with the typearea package. If neither indentation nor vertical space is used, only
the length of the last line would give the reader a guide to the paragraph break. In extreme
cases, it is very difficult to tell whether a line is full or not. Furthermore, typographers find
that a signal given at the paragraph’s end is easily forgotten by the start of the next line.
A signal at the paragraph’s beginning is more easily remembered. Inter-paragraph spacing
has the drawback of disappearing in some contexts. For instance, after a displayed formula it
would be impossible to detect if the previous paragraph continues or a new one begins. Also,
at the top of a new page, it might be necessary to look at the previous page to determine if a
new paragraph has been started or not. All these problems disappear when using indentation.
A combination of indentation and vertical inter-paragraph spacing is redundant and therefore
should be avoided. Indentation alone is sufficient. The only drawback of indentation is that it
shortens the line length. The use of inter-paragraph spacing is therefore justified when using
short lines, such as in a newspaper.

parskip=method

Once in a while you may require a document layout with vertical inter-paragraph spacing
instead of indentation. The KOMA-Script classes provide several ways to accomplish this
with the parskip option. The method consists of two elements. The first element is either
full or half, where full stands for a paragraph spacing of one line and half stands for a
paragraph spacing of half a line. The second element consists of one of the characters “*”,
“+” or “=” and can be omitted. Without the second element, the final line of a paragraph
will end with a white space of at least 1em. With the plus character as the second element,
the white space will be at least one third —and with the asterisk one fourth—the width of a
normal line. With the minus variant, no provision is made for white space in the last line of
a paragraph.

You can change the setting at any time. If you change it inside the document, the
\selectfont command will be called implicitly. Changes to paragraph spacing within a
paragraph will not be visible until the end of the paragraph.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

In addition to the resulting eight combinations for method, you can use the values for simple
switches shown in table 2.5, page 41. Activating the option corresponds to using full with no
second element and therefore results in inter-paragraph spacing of one line with at least 1 em
white space at the end of the last line of each paragraph. Deactivating the option re-activates
the default indentation of 1em at the first line of the paragraph instead of paragraph spacing.
A summary of all possible values for method are shown in table 3.7.

Table 3.7.: Available values of option parskip to select how paragraph are distinguished

false, off, no
Paragraphs are identified by indentation of the first line by lem. There is no spacing
requirement at the end of the last line of a paragraph.

full, true, on, yes
Paragraphs are identified by a vertical space of one line between paragraphs. There
must be at least 1em of free space at the end of the last line of the paragraph.

full-
Paragraphs are identified by a vertical space of one line between paragraphs. There
is no spacing requirement at the end of the last line of a paragraph.

full+
Paragraphs are identified by a vertical space of one line between paragraphs. There
must be at least a third of a line of free space at the end of a paragraph.

fullx*
Paragraphs are identified by a vertical space of one line between paragraphs. There
must be at least a quarter of a line of free space at the end of a paragraph.

half
Paragraphs are identified by a vertical space of half a line between paragraphs. There
must be at least 1em free space at the end of the last line of a paragraph.

half-
Paragraphs are identified by a vertical space of half a line between paragraphs. There
is no spacing requirement at the end of the last line of a paragraph.

half+

Paragraphs are identified by a vertical space of half a line between paragraphs. There
must be at least a third of a line of free space at the end of a paragraph.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.7.: Available values of option parskip (continuation)

halfx
Paragraphs are identified by a vertical space of half a line between paragraphs. There
must be at least a quarter of a line of free space at the end of a paragraph.

never
No inter-paragraph spacing will be inserted even if additional vertical spacing is
needed for vertical adjustment with \flushbottom.

All eight full and half option values also change the spacing before, after, and inside list
environments. This prevents these environments or the paragraphs inside them from having
a larger separation than that between the paragraphs of normal text. Additionally, these
options ensure that the table of contents and the lists of figures and tables are set without any
additional spacing.

The default behaviour of KOMA-Script is parskip=false. In this case, there is no spacing
between paragraphs, only an indentation of the first line by 1em.

3.11. Detecting Odd and Even Pages

In two-sided documents we distinguish left and right pages. Left pages always have an even
page number, and right pages always have an odd page number. Identifying right and left
pages is equivalent to identifying even- or odd-numbered pages, and so we normally refer to
them as even and odd pages in this guide.

In one-sided documents, the distinction between left and right pages does not exist. Never-
theless, there are still pages with even and odd page numbers.

\Ifthispageodd{true part}{false part}

If you want to determine whether text appears on an even or odd page, KOMA-Script provides
the \Ifthispageodd command. The true part argument is executed only if you are currently
on an odd page. Otherwise the false part argument is executed.

Example: Suppose you simply want to show whether a text will be placed onto an even or
odd page. You may achieve that using

This page has an \Ifthispageodd{odd}{even}
page number.

This results in the output
This page has an odd page number.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Because the \Ifthispageodd command uses a mechanism that is very similar to a label
and a reference to it, at least two IXTEX runs are required after each change to the text. Only
then will the decision be correct. In the first run, a heuristic is used to make the initial choice.

In section 21.1, page 475, advanced users can find more information about the problems of
detecting left and right pages, or even and odd page numbers.

3.12. Headers and Footers Using Predefined Page Styles

One of the general characteristics of a document is the page style. In BTEX this primarily
consists of the contents of headers and footers.

headsepline=simple switch
footsepline=simple switch

You can use these options to specify whether a horizontal rule appears beneath the header
or above the footer. You can use any of the values for simple switches shown in table 2.5,
page 41. Setting the headsepline option to true or invoking it with no value results in a line
beneath the header. Similarly, activating the footsepline option results in a rule above the
footer. Deactivating either option switches off the respective rule.

The headsepline option naturally has no effect with the empty and plain page styles, which
are described below, because these styles explicitly dispense with a header. Typographically,
such a line has the effect of making the header appear to be closer to the text. This does not
mean that the header then needs to be moved farther away from the body of the text. Instead,
the header should be considered as belonging to the text body for the purpose of calculating
the type area. KOMA-Script takes this into account by passing the headsepline option to the
typearea package, which then automatically executes the package option headinclude with
the same value. The same applies to the footer separation line. Unlike headsepline, the
footsepline option also affects the plain page style because plain prints a page number in
the footer.

The options themselves do not automatically recalculate the type area. To recalculate it,
use the DIV option with the values last or current (see page 37) or the \recalctypearea
command (see page 39) in chapter 2.

The scrlayer-scrpage package (see chapter 5) offers further possibilities for adjusting lines in
headers and footers.

\pagestyle{page style}
\thispagestyle{local page style}

There are usually four different page styles:

empty is the page style with completely empty headers and footers. In KOMA-Script this is
identical to the standard classes.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

scrartcl

headings is the page style with running heads in the header. In this style, headings are auto-
matically inserted into the header. With the classes scrbook and scrreprt, the headings
of chapters and sections are repeated in the header for two-sided printing — on the outer
side with KOMA-Script, on the inner side with the standard classes. KOMA-Script puts
the page number on the outer side of the footer; the standard classes put it on the inner
side of the header. In one-sided printing, KOMA-Script uses only the chapter headings,
which are centred in the header, and puts the page numbers centred in the footer. scrartcl
behaves similarly but starts one a level deeper in the sectioning hierarchy, with sections
and subsections, because the chapter level does not exist in this case.

While the standard classes automatically convert the running heads to upper-case let-
ters, KOMA-Script uses the capitalisation found in the headings. There are several
typographical reasons for this. Upper-case letters are actually far too massive as a
text decoration. If you use them anyway, they should be set one point smaller and with
slightly tighter spacing. The standard classes do not take these points into consideration.

In addition, the KOMA-Script classes support rules below the header and above the
footer with the headsepline and footsepline options (see page 80).

myheadings mostly corresponds to the headings page style, but the running heads are
not generated automatically —they have to be defined by the user. You can use the
\markboth and \markright commands for that purpose (see page 83).

plain is the page style with no running head and only a page number in the footer. The
standard classes always centre this page number in the footer. KOMA-Script puts the
page number on the outer side of the footer in two-sided mode. KOMA-Script behaves
like the standard classes in one-sided printing.

You can set the page style at any time with the help of the \pagestyle command, and
this setting takes effect with the next page that is output. If you use \pagestyle just before
a command that results in an implicit page break and if the new page style should be used
on the resulting new page, a \cleardoublepage just before \pagestyle will be useful. But
usually you set the page style only once, at the beginning of the document or in the preamble.

To change the page style of the current page only, use the \thispagestyle command. This
occurs automatically at some points in the document. For example, the \thispagestyle
{\chapterpagestyle} command is issued implicitly on the first page of a chapter.

Note that when you use the scrlayer-scrpage package, switching between automatic and
manual running heads is no longer accomplished by changing the page styles but with special
instructions. You should not use the headings and myheadings page styles with this package.

To change the font style used for the header, the footer, or the page number, use the
\setkomafont and \addtokomafont commands (see section 3.6, page 58). The same element,
pageheadfoot, is used for the header and the footer. The element for the page number within
the header or footer is called pagenumber. The pagefoot element, which is also provided

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.8.: Default values for page

style elements Element Default
pagefoot
pageheadfoot \normalfont\normalcolor\slshape
pagenumber \normalfont\normalcolor

by the KOMA-Script classes, is used only if you define a page style with the scrlayer-scrpage
package in which the footer contains text (see chapter 5, page 264).
You can find the default settings in table 3.8.

Example: Suppose you want to set header and footer in a smaller type size and in italics.
However, the page number should not be set in italics but in bold. Apart from the
fact that the result will look horrible, you can do this as follows:

\setkomafont{pageheadfoot}{/
\normalfont\normalcolor\itshape\small}
\setkomafont{pagenumber}{\normalfont\bfseries}

On the other hand, if you only want a smaller font to be used along with the default
slanted text, you can use the following:

\addtokomafont{pagehead}{\small}

As you can see, the previous example uses the pagehead element. You can achieve
the same result using pageheadfoot instead (see table 3.2 on page 59).

It is not possible to use these methods to force upper-case letters to be used automatically
for the running heads. Although you can redefine \MakeMarkcase, in such cases you should
instead use the scrlayer-scrpage package (see chapter 5, page 273).

If you define your own page styles, the commands \usekomafont{pageheadfootl,
\usekomafont{pagenumber}, and \usekomafont{pagefoot} can be useful. In particular,
if you do not use the KOMA-Script package scrlayer-scrpage (see chapter 5) but use, for ex-
ample, the fancyhdr package (see [vO04]), you can use these commands in your definitions. In
this way you can maintain compatibility with KOMA-Script as much as possible. If you do
not use these commands in your own definitions, changes such as those shown in the previous
examples have no effect. The scrlayer-scrpage package tries to maintain maximum compatibil-
ity as long as, for example, \thepage is not used directly for the page number rather than the
\pagemark which is provided for it.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

Table 3.9.: Macros to set up the page style of special pages

\titlepagestyle

Page style for a title page when using in-page titles.
\partpagestyle

Page style for pages with \part titles.
\chapterpagestyle

Page style for the first page of a chapter.
\indexpagestyle

Page style for the first page of the index.

\markboth{left mark}{right mark}
\markright{right mark}

The myheadings page style does not set the running head. Instead, you set it with the help of
the \markboth and \markright commands. This way the left mark will normally be used in
the header of even pages and right mark in the header of odd pages. With one-sided printing,
only the right mark exists. With the scrlayer-scrpage package, the \markleft command is
also available.

You can use these commands with other page styles too. However, when combined with au-
tomatic running heads, for example with the headings page style, the effect of the commands
lasts only until the next time the respective marks are set automatically.

\titlepagestyle

\partpagestyle

\chapterpagestyle

\indexpagestyle

On some pages, a different page style is chosen automatically with the help of the
\thispagestyle command. Which page style this actually is, is defined by these four macros,
of which \partpagestyle and \chapterpagestyle are found only with classes scrbook and
scrreprt, and not in scrartcl. The default value for all four cases is plain. You can find the
meaning of these macros in table 3.9. You can redefine the page styles with the \renewcommand
macro.

Example: Suppose you do not want the pages with a \part heading to be numbered. You
can use the following command in the preamble of your document:
\renewcommand*{\partpagestyle}{empty}

As mentioned previously on page 80, the empty page style is exactly what is required
in this example. Of course, you can also use a user-defined page style.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Suppose you have defined your own page style for initial chapter pages with the
scrlayer (see section 17.4) or the scrlayer-scrpage package (see section 18.2). You
have given this page style the fitting name of chapter. To actually use this style,
you must redefine \chapterpagestyle in this way:

\renewcommand*{\chapterpagestyle}{chapter}

Suppose you do not want the table of contents of a book to have page numbers.
Everything after the table of contents, however, should use the headings page style,
including the plain page style for the first page of every chapter. You can use the
following:

\clearpage

\pagestyle{empty}
\renewcommand*{\chapterpagestyle}{empty}
\tableofcontents

\clearpage

\pagestyle{headings}
\renewcommand*{\chapterpagestyle}{plain}

You can also keep the redefinition local by using a group. This method has the

advantage that you do not need to make any assumptions about the what the
previous page style was in order to restore it after your local change:

\clearpage

\begingroup

\pagestyle{empty}
\renewcommand*{\chapterpagestyle}{empty}
\tableofcontents

\clearpage

\endgroup

Note, however, that you never should put a numbered sectioning command into a
group. Otherwise you may get unpredictable results with commands like \1label.

On page 382 in section 15.2, you will discover the \AfterTOCHead command, which
makes a solution even easier:

\AfterTOCHead[toc]{/
\thispagestyle{emptyl}/
\pagestyle{emptyl}/
}
This takes advantage of the fact that if there are several \thispagestyle commands
on the same page, the last one always wins.

You might think that you can put running heads on the first page of a chapter simply by using
the

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.10.: Available numbering

numbering style example description styles of page numbers
arabic 8 Arabic numbers

roman viii lower-case Roman numbers

Roman VIII upper-case Roman numbers

alph h letters

Alph H capital letters

\renewcommand*{\chapterpagestyle}{headings}

command. Before you try this, you should read the remarks on \rightfirstmark starting on
page page 448 in chapter 18, part Il .

\pagenumbering{numbering stylel

This command works the same way in KOMA-Script as in the standard classes. Strictly
speaking, it is a feature of neither the standard classes nor the KOMA-Script classes but of
the IATEX kernel. This command is used to change the numbering style of page numbers.
The changes take effect immediately, i.e., starting from the page that contains the com-
mand. If necessary, you should first close the current page with \clearpage or better
\cleardoubleoddpage. You can find the available settings for numbering style in table 3.10.

Calling \pagenumbering always resets the page number. The current page becomes number
1 in the selected numbering style. In order that two-sided documents produce the correct
results on an even page, so that the left-hand page is not missing, you should always add
\cleardoubleoddpage before \pagenumbering. The next section provides more information
about potentially inserted blank pages.

Let me say a word about a common mistake found in various templates circulating on the
Internet. If you encounter lines like the following — without the initial comment naturally — this
is an unmistakable sign that the creator did not read or understand the remark above:

/4 Attention! This exzample contains errors!
/i Please note the explanation in the text!
\tableofcontents

\pagenumbering{arabic}
\setcounter{page}{1}

Since \tableofcontents outputs the table of contents but does not automatically issue a page
break at the end, the page numbering is already changed on the last page of the table of contents.
Because it lacks a \cleardoubleoddpage command before \pagenumbering, it receives a pagi-
nation of the Arabic number 1. Additionally, the final line which sets the page numbering to 1 is
superfluous, since this is already done by \pagenumbering.

Sometimes—without the initial comment, naturally— you find:

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrartcl

scrbook

/4 Attention! This exzample contains errors!

/4 Please note the explanation in the text!

\tableofcontents

\pagebreak

\pagenumbering{arabic}

\setcounter{page}{1}

Here the creator tried to solve the problem with the final page of the table of contents with the
help of \pagebreak.

Unfortunately, this solution is not much better. Here there is a page break after the last page
of the table of contents. This may cause entries on the last page of a two-sided document to have
excess vertical spacing (see \flushbottom, page 57). \pagebreak is clearly the wrong command
here.

Furthermore, \newpage or \clearpage would not be sufficient for a two-sided document. For
example, if the last page of the table of contents had the Roman numeral vii, the Arabic numbered
right-side page 1 would immediately follow the Roman numeral right-side page. A left-side page
between the two would be missing, which could cause serious problems with later printing.

My advice: Avoid using templates that contain errors with respect to such simple things. Inci-
dentally, the correct way would be:

\tableofcontents

\cleardoubleoddpage

\pagenumbering{arabic}
This also applies if scrartcl uses a class that usually does not start a new page after the table of
contents. If you switch the page numbering, a new right-hand page must be started. If you do
not want such a change, you should keep the numbering style of pages consistent throughout the
document without changing it in between.

It is easier to change the numbering style when using scrbook. There you have the support of
two commands, \frontmatter and \mainmatter, for the most commonly used switching. For
more information, please see section 3.15, page 94.

3.13. Interleaf Pages

Interleaf pages are pages that are inserted between parts of a document. Traditionally, these
pages are completely blank. IXTEX, however, sets them by default with the current page style.
KOMA-Script provides several extensions to this functionality.

Interleaf pages are mostly found in books. Because book chapters commonly start on the
right (recto) page of a two-page spread, an empty left (verso) page must be inserted if the
previous chapter ends on a recto page. For this reason, interleaf pages really only exist for
two-sided printing.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

cleardoublepage=page style
cleardoublepage=current

With this option, you can define the page style of the interleaf pages created by the commands
\cleardoublepage, \cleardoubleoddpage, or \cleardoubleevenpage to advance to the de-
sired page. You can use any previously defined page style (see section 3.12 from page 80 and
chapter 5 from page 255). In addition, cleardoublepage=current is also possible. This case
corresponds to the default prior to KOMA-Script 2.98¢c and creates an interleaf page without
changing the page style. Starting with KOMA-Script 3.00, the default follows the recom-
mendation of most typographers and creates interleaf pages with the empty page style unless
you switch compatibility to earlier KOMA-Script versions (see option version, section 3.2,
page 55).

Example: Suppose you want interleaf pages that are empty except for the pagination, so they
are created with plain. You can achieve this, for example, with:

\KOMAoptions{cleardoublepage=plain}

You can find more information about the plain page style in section 3.12, page 81.

\clearpage

\cleardoublepage
\cleardoublepageusingstyle{page style}
\cleardoubleemptypage
\cleardoubleplainpage
\cleardoublestandardpage
\cleardoubleoddpage
\cleardoubleoddpageusingstyle{page style}
\cleardoubleoddemptypage
\cleardoubleoddplainpage
\cleardoubleoddstandardpage
\cleardoubleevenpage
\cleardoubleevenpageusingstyle{page style}
\cleardoubleevenemptypage
\cleardoubleevenplainpage
\cleardoubleevenstandardpage

The ITEX kernel provides the \clearpage command, which ensures that all pending floats
are output and then starts a new page. There is also the \cleardoublepage command, which
works like \clearpage but which starts a new right-hand page in two-sided printing (see the
twoside layout option in section 2.4, page 40). An empty left-hand page in the current page
style is output if necessary.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

With \cleardoubleoddstandardpage, KOMA-Script works as exactly in the way just de-
scribed for the standard classess. The \cleardoubleoddplainpage command, on the other
hand, additionally changes the page style of the empty left page to plain in order to suppress
the running title. Likewise, the \cleardoubleoddemptypage command uses the empty page
style to suppress both running title and page number on the empty left-hand side. The page
is thus completely empty. If you want to specify your own page style for the interleaf page,
this should be given as an argument of \cleardoubleoddusingpagestyle. You can use any
previously defined page style (see chapter 5).

Sometimes you want chapters to start not on the right-hand but on the left-hand page.
Although this layout contradicts classic typography, it can be appropriate if the double-
page spread at the beginning of the chapter very specific contents. For this reason,
KOMA-Script provides the \cleardoubleevenstandardpage command, which is equivalent
to the \cleardoubleoddstandardpage command except that the next page is a left page.
The same applies to the \cleardoubleevenplainpage, \cleardoubleevenemptypage, and
\cleardoubleevenpageusingstyle commands, the last of which expects an argument.

The \cleardoublestandardpage, \cleardoubleemptypage, and \cleardoubleplainpage
commands, and the single-argument \cleardoublepageusingstyle command, as well as the
standard \cleardoublepage command, depend on the open option explained in section 3.16,
page 95 and, depending on that setting, correspond to one of the commands explained in the
preceding paragraphs.

Example: Suppose you want to insert a double-page spread into your document with a picture
on the left-hand page and a new chapter starting on the right-hand page. If the
previous chapter ends with a left-hand page, an interleaf page has to be added,
which should be completely empty. The picture should be the same size as the text
area without any header or footer.

At the relevant place in your document, write:

\cleardoubleevenemptypage
\thispagestyle{empty}
\includegraphics[width=\textwidth,
height=\textheight, %
keepaspectratiol] /
{picture}
\chapter{Chapter Heading}

The first of these lines switches to the next left-hand page. If needed it also adds
a completely blank right-hand page. The second line makes sure that the following
left-hand page will also be set using the empty page style. The third through sixth
lines load an image file named picture and scale it to the desired size without
distorting it. This command requires the graphicx package (see [Carl7]). The last
line starts a new chapter on the next page, which will be a right-hand one.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.11.: Available values for the footnotes option to configure footnotes

multiple
Consecutive footnote marks will be separated by \multfootsep.

nomultiple
Consecutive footnote marks will be handled like single footnotes and not separated
from each other.

In two-sided printing, \cleardoubleoddpage always moves to the next left-hand page and
\cleardoubleevenpage to the next right-hand page. The style of the interleaf page to be
inserted if necessary is defined with the cleardoublepage option.

3.14. Footnotes

Unlike the standard classes, KOMA-Script offers the ability to configure the format of the
footnote block.

footnotes=setting
\multfootsep

Footnotes are marked by default in the text with a small superscript number. If several
footnotes appear in succession at the same point, it gives the impression that there is one
footnote with a large number rather than multiple footnotes (e.g. footnote 12 instead of
footnotes 1 and 2). With footnotes=multiple, footnotes that follow each other directly are
separated with a delimiter instead. The default delimiter in \multfootsep is defined as a
comma without a space:

\newcommand*{\multfootsep}{,}

This can be redefined.

The whole mechanism is compatible with the footmisc package, version 5.3d to 5.5b (see
[Faill]). It affects footnote markers placed using \footnote, as well as those placed directly
with \footnotemark.

You can switch back to the default footnotes=nomultiple at any time using the
\KOMAoptions or \KOMAoption command. However, if you encounter any problems using
another package that alters the footnotes, you should not use this option, nor should you
change the setting anywhere inside the document.

A summary of the available setting values of footnotes can be found in table 3.11.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\footnote [number]l{tezt}
\footnotemark [number]
\footnotetext [number]{text?}
\multiplefootnoteseparator

Footnotes in KOMA-Script are produced, as they are in the standard classes, with
the \footnote command, or alternatively the pair of commands \footnotemark and
\footnotetext. As in the standard classes, it is possible for a page break to occur within a
footnote. Normally this happens if the footnote mark is placed so near the bottom of a page
as to leave IATEX no choice but to move the footnote to the next page. Unlike the standard
classes, KOMA-Script can recognize and separate consecutive footnotes automatically. See
the previously documented option footnotes.

If instead you want to place this delimiter manually, you can do so by calling
\multiplefootnoteseparator. However, users should not redefine this command, as it
contains not only the delimiter but also the delimiter’s formatting, for example the font
size selection and the superscript. The delimiter itself is stored in the previously described
\multfootsep command.

Example: Suppose you want to put two footnotes after a single word. First you try
Word\footnote{lst footnote}\footnote{2nd footnote}

Let’s assume that the footnotes are numbered 1 and 2. Since the two footnote
numbers follow each other directly, it creates the impression that the word has only
one footnote numbered 12. You can change this behaviour by using

\KOMAoptions{footnotes=multiple}

to enable the automatic recognition of footnote sequences. Alternatively, you can
use

word\footnote{Footnote 1}/
\multiplefootnoteseparator
\footnote{Footnote 2}

This should give you the desired result even if automatic detection fails or cannot
be used for some reason.

Now suppose you also want the footnote numbers to be separated not just by a
comma, but by a comma and a space. In this case, write

\renewcommand*{\multfootsep}{, \nobreakspace}

in the preamble of your document. \nobreakspace was used here instead of a
normal space to avoid paragraph or page breaks within the sequence of footnotes.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\footref{reference}

Sometimes you have a footnote in a document to which there are several references in the
text. An inconvenient way to typeset this would be to use \footnotemark to set the number
directly. The disadvantage of this method is that you need to know the number and manually
set every \footnotemark command. And if the number changes because you add or remove
an earlier footnote, you will have to change each \footnotemark. KOMA-Script thefore offers
the \label mechanism to handle such cases. After placing a \label inside the footnote, you
can use \footref to set all the other marks for this footnote in the text.

Example: You are writing a text in which you must create a footnote each time a brand name
occurs, indicating that it is a registered trademark. You can write, for example,

Company SplishSplash\footnote{This is a registered trade name.
A1l rights are reserved.\label{refnotel}}

produces not only SplishPlump\footref{refnote}

but also SplishPlash\footref{refnote}.

This will produce the same footnote mark three times, but only one footnote text.
The first footnote mark is produced by \footnote itself, and the following two
footnote marks are produced by the additional \footref commands. The footnote
text will be produced by \footnote.

When setting footnote marks with the \label mechanism, any changes to the footnote num-
bers will require at least two IATEX runs to ensure correct numbers for all \footref marks.
Note that statements like \ref or \pageref are fragile and therefore you should put
\protect in front of them if they appear in moving arguments such as headings. By the
way, from IXTEX 2021-05-01 on, the command is provided by ITEX itself.

\deffootnote[mark width]l{indent }{parindent}{definitionlt
\deffootnotemark{definition}
\thefootnotemark

The KOMA-Script classes set footnotes slightly differently than the standard classes do. As
in the standard classes, the footnote mark in the text is rendered with small, superscript
numbers. The same formatting is used in the footnote itself. The mark in the footnote is
typeset right-justified in a box with a width of mark width. The first line of the footnote
follows directly.

All subsequent lines will be indented by the length of indent. If the optional parameter
mark width is not specified, it defaults to indent. If the footnote consists of more than one
paragraph, the first line of each paragraph is indented by the value of parindent.

figure 3.1 shows the different parameters again. The default configuration of the KOMA-
Script classes is as follows:

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

mark width .
first paragraph of a footnote
indent

|
. I parindent
Figure 3.1.: Parameters that con- | next paragraph of a footnote
trol the footnote layout I

\deffootnote[lem]{1.5em}{1lem}{/
\thefootnotemark/
}

\textsuperscript controls both the superscript and the smaller font size. The command
\thefootnotemark contains the current footnote mark without any formatting.

The footnote, including the footnote mark, uses the font specified in the footnote ele-
ment. You can change the font of the footnote mark separately using the \setkomafont
and \addtokomafont commands (see section 3.6, page 58) for the footnotelabel element.
See also table 3.2, page 59. The default setting is no change to the font. Please don’t mis-
use this element for other purposes, for example to set the footnotes ragged right (see also
\raggedfootnote, page 93).

The footnote mark in the text is defined separately from the mark in front of the actual
footnote. This is done with \deffootnotemark. The default setting is:

\deffootnotemark{/
\thefootnotemarkl}
With this default, the font for the footnotereference element is used (see table 3.2, page 59).
Thus, the footnote marks in the text and in the footnote itself are identical. You can change
the font with the commands \setkomafont and \addtokomafont (see section 3.6, page 58).

Example: One feature that is often requested is footnote marks which are neither in su-
perscript nor in a smaller font. They should not touch the footnote text but be
separated by a small space. You can accomplish this as follows:

\deffootnote{lem}{lem}{\thefootnotemark\ }

This will set the footnote mark and subsequent space right-aligned in a box of width
lem. The lines of the footnote text that follow are also indented by 1em from the
left margin.

Another layout that is often requested is footnote marks that are left-aligned. You
can obtain them with the following definition:

\deffootnote{1.5em}{1em}{/
\makebox[1.5em] [1]{\thefootnotemark}}

If, however you want to change the font for all footnotes, for example to sans serif,
this can easily be done with the commands \setkomafont and \addtokomafont
(see section 3.6, page 58):

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\setkomafont{footnote}{\sffamily}

As the examples show, KOMA-Script allows a wide variety of different footnote formats with
this simple user interface.

\setfootnoterule[thickness]{length}

Generally, a horizontal rule is set between the text area and the footnote area, but normally
this rule does not extend the full width of the type area. With \setfootnoterule, you can set
the exact thickness and length of the rule. In this case, the parameters thickness and length
are only evaluated when setting the rule itself. If the optional argument thickness has been
omitted, the thickness of the rule will not be changed. Empty arguments for thickness or
length are also allowed and do not change the corresponding parameters. Using absurd values
will result in warning messages both when setting and when using the parameters.

You can change the colour of the rule with the footnoterule element using the
\setkomafont and \addtokomafont commands (see section 3.6, page 58). The default is
no change of font or colour. In order to change the colour, you must also load a colour
package like xcolor.

\raggedfootnote

By default KOMA-Script justifies footnotes just as in the standard classes. But you
can also change the justification separately from the rest of the document by redefining
\raggedfootnote. Valid definitions are \raggedright, \raggedleft, \centering, \relax or
an empty definition, which is the default. The alignment commands of the ragged2e package
are also valid (see [Sch09]).

Example: Suppose you are using footnotes only to provide references to very long links, where
line breaks would produce poor results if justified. You can use

\let\raggedfootnote\raggedright

in your document’s preamble to switch to ragged-right footnotes.

\ExecuteDoHook{footnote/text/begin}
\ExecuteDoHook{footnote/text/end}

For experts there are also two hooks of type do-hook (see section 12.8 from page 358). The first
of these is used at the very beginning of \@makefntext before \raggedfootnote is executed.
The second one at the end before the paragraph is finished. Currently neither hook is used by
KOMA-Script itself.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook

3.15. Book Structure

Sometimes books are loosely divided into front matter, main matter, and back matter. KOMA-
Script also provides this capability for scrbook.

\frontmatter
\mainmatter
\backmatter

The front matter includes all the material which appears before the main text begins, including
title pages, preface, and table of contents. It is initiated with \frontmatter. In the front
matter, Roman numerals are used for the page numbers, and chapter headings in the header are
not numbered. However, section headings are numbered consecutively, starting from chapter
0. This typically does not matter, as the front matter is used only for the title pages, table
of contents, lists of figures and tables, and a preface or foreword. The preface can thus be
created as a normal chapter. A preface should be as short as possible and never divided into
sections. The preface thus does not require a deeper level of structure than the chapter.

If you see things differently and want to use numbered sections in the chapters of the front
matter, as of version 2.97e, the section numbering no longer contains the chapter number.
This change only takes effect when the compatibility option is set to at least version 2.97e
(see option version, section 3.2, page 55). It is explicitly noted that this creates confusion
with chapter numbers! The use of \addsec and \section* (see section 3.16, page 105 and
page 106) are thus, in the author’s opinion, greatly preferable.

As of version 2.97e the numbering of floating environments, such as tables and figures, and
equation numbers in the front matter also contains no chapter-number part. To take effect,
this too requires the corresponding compatibility setting (see the version option, section 3.2,
page 55).

The part of the book with the main text is introduced with \mainmatter. If there is no
front matter, you can omit this command. The default page numbering in the main matter
uses Arabic numerals and (re)starts the page count at 1 at the start of the main matter.

The back matter is introduced with \backmatter. Opinions differ as to what belongs in
the back matter. So in some cases you will find only the bibliography, in some cases only
the index, and in other cases both of these as well as the appendices. The chapters in the
back matter are similar to the chapters in the front matter, but page numbering is not reset.
If you do require separate page numbering, you can use the \pagenumbering command in
section 3.12, page 85.

3.16. Document Structure

The structure refers to dividing a document into parts, chapters, sections, and additional levels
of structure.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

Table 3.12.: Available values for the open option to select page breaks with interleaf pages using scrbook
or scrreprt

any
Parts, chapter, index, and back matter use \clearpage, not
\cleardoublepage; \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
behave the same as using open=right.

left
Part, chapter, index, and back matter wuse \cleardoublepage; the
commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
result in a page break and add an interleaf page if needed to reach the next left-hand
page.

right
Part, chapter, index, and back matter use \cleardoublepage; the
commands \cleardoublepageusingstyle, \cleardoublestandardpage,

\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
result in a page break and add an interleaf page if needed to reach the next
right-hand page.

open=method

The KOMA-Script classes scrbook and scrreprt give you the choice of where to start a new
chapter with two-sided printing. By default scrreprt starts a new chapter on the next page.
This is equivalent to method any. However, scrbook starts new chapters at the next right-
hand page. This is equivalent to method right and is usually used in books. But some-
times chapters should start on the left-hand page of a two-page spread. You can accomplish
this with the method left. You can find a summary of the available values in table 3.12.
The table also describes the effects of \cleardoublepage, \cleardoublepageusingstyle,
\cleardoublestandardpage, \cleardoubleplainpage, and \cleardoubleemptypage (see
section 3.13, page 87).

Since KTEX does not differentiate between left-hand and right-hand pages in one-sided
printing, the option has no effect in that case.

In the scrartcl class, the section is the first structural element below the part. For this
reason, scrartcl does not support this option.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

scrbook,
scrreprt

scrbook,
scrreprt

chapterprefix=simple switch

appendixprefix=simple switch

\IfChapterUsesPrefixLine{then code}{else code}

With the standard classes book and report, a chapter heading consists of a line with the
word “Chapter”! followed by the chapter number. The heading itself is set left-justified on
the following line. The same effect is obtained in KOMA-Script with the chapterprefix
option. You can use any value from table 2.5, page 41 as the simple switch. The default,
however, is chapterprefix=false, the opposite behaviour of that of the standard classes,
which corresponds to chapterprefix=true. These options also affect the automatic running
heads in the headers (see section 3.12, page 81).

Sometimes you may want to use the simplified chapter headings produced by
chapterprefix=false but at the same time to have the heading of an appendix preceded
by a line with “Appendix” followed by the appendix letter. This is achieved by using the
appendixprefix option (see table 2.5, page 41). Since this results in an inconsistent document
layout, I advise against using this option. Ultimately, this option changes the chapterprefix
option automatically at the beginning of the \appendix.

You can execute code depending on the current setting for the chapter preceding line us-
ing \IfChapterUsesPrefixLine. If chapterprefix is currently active, the then code is
executed; otherwise, the else code is executed.

You can change the font style of the chapter number line that uses chapterprefix=true
or appendixprefix=true by using the chapterprefix element with the \setkomafont and
\addtokomafont commands (see section 3.6, page 58). The default is to use the chapter
element (see page 101, as well as table 3.15, page 104).

You can find additional settings for chapter headings in the explanation for
\RedeclareSectionCommand and the commands \chapterlineswithprefixformat and
\chapterlinesformat in section 21.8, part II.

headings=setting

Headings of sectioning levels normally use a relatively large font size in both the standard
classes and KOMA-Script. This choice does not appeal to everyone and is especially prob-
lematic for small paper sizes. Consequently, KOMA-Script provides, in addition to the large
headings defined by the headings=big option, the options headings=normal and headings=
small, which allow for smaller headings. The font sizes resulting from these options for scrbook
and scrreprt are shown in table 3.15, page 104. Specifically, all three settings reset the elements
chapter, section, subsection, subsubsection, paragraph, and subparagraph to the cor-
responding defaults. scrartcl generally uses slightly smaller headings. The spacing before and
after chapter headings is also reset by these options.

Chapter headings also have the two options headings=twolinechapter and headings=

!"When using another language the word “Chapter” is of course translated to the appropriate language.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

scrbook,
scrreprt

onelinechapter, which correspond to chapterprefix=true and chapterprefix=false ex-
plained above. For the appendix, appendixprefix=true and appendixprefix=false serve
as alternatives for the headings=twolineappendix and headings=onelineappendix options.
Of course, these options do not exist with scrartcl.

The headings=standardclasses option adjusts the font sizes of the headings to those of
the standard classes. In addition, the font for the disposition element is set to \bfseries.
It therefore no longer uses a sans-serif font for the headings. If you use scrbook or scrreprt,
headings=twolinechapter is also set and the spacing between the chapter headings is ad-
justed to that of the standard classes.

You can set the method to specify the page on which new chapters begin with headings=
openany, headings=openright, and headings=openleft, or alternatively with the open op-
tion, which takes the values any, right, and left (see above).

Another special feature of KOMA-Script is the handling of the optional argument of the
sectioning commands \part, \chapter, etc. down to \subparagraph. You can change its
function and meaning with the options headings=optiontohead, headings=optiontotoc and
headings=optiontoheadandtoc.

See table 3.13 for a summary of all available settings for the headings option. The expla-
nations of the sectioning commands below contain examples using some of these settings.

Table 3.13.: Available values for the headings option to format section headings

big
Use large fonts in the headings for each of the default sectioning levels with wide
spacing above and below the titles.

normal
Use medium-sized fonts in the headings with medium spacing above and below the
titles.

onelineappendix, noappendixprefix, appendixwithoutprefix,
appendixwithoutprefixline
Chapter headings in the appendix are set like other headings.

onelinechapter, nochapterprefix, chapterwithoutprefix,
chapterwithoutprefixline
Chapter titles are set like other headings.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.13.: Available values for the headings option (continued)

openany
The commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage gener-
ate a page break and insert an interleaf page if needed to reach the next right-hand
page in two-sided printing, the same as in headings=openright. Parts, chapter,
the index, and back matter use \clearpage instead of \cleardoublepage.

openleft
The commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
generate a page break and insert an interleaf page if needed to reach the next
left-hand page in two-sided printing. Part, chapter, index and back matter use
\cleardoublepage.

openright
The commands \cleardoublepageusingstyle, \cleardoublestandardpage,
\cleardoubleplainpage, \cleardoubleemptypage, and \cleardoublepage
generate a page break and insert an interleaf page if needed to reach the next
right-hand page in two-sided printing. Part, chapter, index and back matter use
\cleardoublepage.

optiontohead
The advanced functionality of the optional argument of the sectioning commands
\part down to \subparagraph is activated. By default, the optional argument is
used only for the running head.

optiontoheadandtoc, optiontotocandhead
The advanced functionality of the optional argument of the sectioning commands
\part down to \subparagraph is activated. By default, the optional argument is
used for the running head and the table of contents.

optiontotoc
The advanced functionality of the optional argument of the sectioning commands
\part down to \subparagraph is activated. By default, the optional argument is
used only for the table of contents.

small
Use small fonts in the headings with small spacing above and below the titles.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.13.: Available values for the headings option (continued)

standardclasses
Reset the font settings for each of the standard sectioning levels and use headings
with the sizes of the standard classes. For chapter headings, scrbook and scrreprt set
headings=twolinechapter.

twolineappendix, appendixprefix, appendixwithprefix, appendixwithprefixline
Chapter titles in the appendix are set with a number line whose format is determined
by \chapterformat.

twolinechapter, chapterprefix, chapterwithprefix, chapterwithprefixline
Chapter titles are set with a number line whose format is determined by
\chapterformat.

numbers=setting

According to DUDEN, if only Arabic numerals are used to number section headings, the
German practice is to have no point at the end (see [DUD96, R3]). On the other hand, if
Roman numerals or letters appear in the numbering, then a point should appear at the end
of the numbering (see [DUD96, R 4]). KOMA-Script has a mechanism that tries to automate
this somewhat complex rule. The result is that normally after the sectioning commands \part
and \appendix the numbering switches to using a final point. This information is saved in
the aux file and takes effect on the next KIEX run.

Sometimes the mechanism for placing or omitting the final point may fail. Sometimes other
languages have different rules. Therefore you can force the use of the final point with the
option numbers=endperiod or to prohibit it with numbers=noendperiod.

Note that this mechanism only takes effect on the next IXTEX run. Therefore, before you
try to use these options to force the correct numbering format, you should always perform
another IXTEX run without modifying the document.

When using the language setting russian of the package polyglossia, the setting of the
option is overwritten by redefining \autodot. Subsequent setting of the option then also has
no effect. However, from version 1.50a the package offers an option to switch off this very
restrictive behaviour. More details can be found in the manual [CRSR22].

You can find a summary of the available values for the setting of numbers in table 3.14.
Unlike most other settings, this option can only be set in the document preamble, i.e. before
\begin{document}.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.14.: Available values of the numbers option to configure the final points of the numbers for
section headings

autoendperiod, autoenddot, auto
KOMA-Script decides whether to set the point at the end of sectioning command
numbers. If there are only Arabic numerals, the point will be omitted. If a letter or
Roman numeral is found, the point is set. However, references to these numbers are
set without a final point.

endperiod, withendperiod, periodatend, enddot, withenddot, dotatend
All numbers of sectioning commands and their subordinate numbers are set with a
final point. Only references will be set without the final point.

noendperiod, noperiodatend, noenddot, nodotatend
All numbers of sectioning commands are set without a final point.

chapteratlists
chapteratlists=value

scrbook, As mentioned in section 3.20, page 143, every chapter that is created with \chapter normally

scrreprt ingerts a vertical space in the lists of floating environments (e.g., tables and figures). Since

version 2.96a, this also applies to the \addchap command unless you choose a compatibility
setting for an earlier version (see the version option in section 3.2, page 55).

In addition, you can use the chapteratlists option to change the vertical spacing by
specifying the desired distance as the value. The default with listof=chaptergapsmall is
10 pt (see theversion option in section 3.2, page 55).

If you use chapteratlists=entry or chapteratlists without specifying a value, instead
of a vertical space, the chapter entry itself will be entered into the lists. Note that such an
entry occurs even if the chapter does not contain a floating environment. A method where
only chapters with floating environments are displayed in the respective list can be found in
the German-language KOMA-Script forum at [Koh15].

Please note that changes to this option only takes effect after two additional ITEX runs.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\part [short version]{heading}

\chapter [short version]{heading}
\section[short version]{heading}
\subsection[short version]{heading}
\subsubsection[short versionl]{heading’}
\paragraph[short version]{heading}
\subparagraph[short version]l{heading}

The standard sectioning commands in KOMA-Script work the same way as those in the
standard classes. Thus, you can specify an alternative text for the table of contents and
running heads as an optional argument to the sectioning commands.

However, with the headings=optiontohead option, KOMA-Script only uses the optional
argument short version in the running head, not the table of contents. Of course, this
text will only appear if you use a page style that puts the corresponding sectioning level in
the running head. See section 3.12 and chapter 5. With the headings=optiontotoc option,
KOMA-Script uses the optional argument short version exclusively for the table of contents
and not the running head. However, the entry will be shown only if the tocdepth counter
is great enough (see section 3.9, page 76). With the headings=optiontoheadandtoc option,
KOMA-Script uses the optional argument short version in both the table of contents and
the running head. These three options all activate the extended interpretation of the optional
argument short version, which is not active by default.

The extended interpretation of the optional argument checks to see if there is an equals
sign in short wversion. If so, the optional argument will be interpreted as an option list.
Three options—head=running head, tocentry=table of contents entry, reference=
reference title, and nonumber=simple switch — are supported with this format. To use
commas or equals signs within the values of those options, you must enclose them in braces.

Please note that this mechanism only works as long as KOMA-Script controls the sectioning
commands. If you use package that redefines the KOMA-Script’s or the internal IXTEX kernel’s
sectioning commands, KOMA-Script can no longer provide this extended mechanism. This
also applies to a KOMA-Script extension that is always active: sectioning commands with no
heading text do not create entries in the table of contents. If you really want an entry with
empty heading text, you can use an invisible entry like \mbox{}.

Example: Suppose you have a document with very long chapter headings. These headings
should appear in the table of contents, but you want to limit the running head to
short, single-line headings. You can do this with the optional argument of \chapter.

\chapter [short version of chapter heading]
{The Sectioning Command for Chapters
Supports not only the Heading Text
Itself but also a Short Version Whose
Use can be Controlled}

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

A little later you realize that the line breaks for this long heading are very inap-
propriate. You therefore want to choose the breaks yourself. Nevertheless, you still
want automatic line breaking in the table of contents. With

\chapter [head={short version of chapter heading},
tocentry={The Sectioning
Command for Chapters Supports not
only the Heading Text Itself but
also a Short Version Whose Use
can be Controlled}]
{The Sectioning\\
Command for Chapters\\
Supports not only\\
the Heading Text Itself\\
but also\\
a Short Version Whose\\
Use can be Controlled}

you create separate entries for the table of contents, running head, and chapter
heading itself. The arguments of the options head and tocentry have been enclosed
in braces so their contents can be arbitrary.

The need for braces in the example above is best illustrated by another example.
Suppose you chose the headings=optiontotoc option and set the title this way:

\section[head=\emph{value}]
{Option head=\emph{valuel}}

This results in the entry “Option head=walue” in the table of contents but “wvalue”
in the running head. But surely you wanted the entry “head=walue” in the table
of contents and the complete heading text in the running head. You can do this
using braces:

\section[head{=}\emph{value}]
{Option head=\emph{valuel}}

A similar case concerns the comma. Using the same headings option as before

\section[head=0, 1, 2, 3, \dots]
{Natural Numbers Including the Zero}

results in an error because the comma is interpreted as the separator between the
individual options of the option list “0, 1, 2, 3, \dots”. But writing

\section[head={0, 1, 2, 3, \dots}]
{Natural Numbers Including the Zero}

makes “0, 1, 2, 3, \dots” the argument of the head option.

Like setting the title of a running head with the head option, or setting the title of a
table-of-contents entry with the tocentry option, you can set the title of a reference with

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

scrbook,
scrreprt

scrbook,
scrreprt

the nameref or titleref packages, or with the titleref module of the zref package, using the
reference option. Note that the support for the titleref package is rather rudimentary, since
that package’s performance is poor compared to the other two, and it is not fully compatible
with hyperref.

You can deactivate the numbering using nonumber=true in the extended optional argument.
In contrast to the starred versions of the sectioning commands explained below, the titles will
still be added to the table of contents and, if applicable, used for the running head. For \part,
\chapter, and \section, using nonumber=true this essentially corresponds to the \addpart,
\addchap, and \addsec commands, which are explained on page 106.

The part-level title (\part) differs from other sectioning levels by being numbered inde-
pendently. This means that the chapter level (in scrbook or scrreprt), or the section level
(in scrartcl) is numbered consecutively over all parts. Furthermore, for the scrbook and
scrreprt classes, the title of the part level together with the corresponding preamble (see
\setpartpreamble, page 114) is set on a separate page.

The \chapter command only exists in the book and report classes, that is, in book,
scrbook, report and scrreport, but not in the article classes article and scrartcl. Furthermore,
the \chapter command in KOMA-Script differs substantially from the version in the stan-
dard classes. In the standard classes, the chapter number is used together with the prefix
“Chapter”, or the corresponding word in the appropriate language, on a separate line above
the actual chapter title text. KOMA-Script replaces this overpowering style with a simple
chapter number before the chapter title, but you can restore the original behaviour with the
chapterprefix option (see page 96).

Please note that \part and \chapter in the scrbook and scrreprt classes change the page style
for one page. The page style applied in KOMA-Script is defined in the macros \partpagestyle
and \chapterpagestyle (see section 3.12, page 83).

You can change the font style for all headings with the \setkomafont and \addtokomafont
commands (see section 3.6, page 58). In doing so, the element disposition is applied first,
followed by the specific element for each sectioning level (see table 3.2, page 59). There is
a separate elements, partnumber, for the number of the part heading, and chapterprefix,
for the optional prefix line of chapter headings. The initial definition for the disposition
element is \normalcolor\maybesffamily\bfseries. The default font sizes for the specific
elements depends on the options headings=big, headings=normal, and headings=small (see
page 96). They are listed in table 3.15.

Example: Suppose you use the headings=big class option and notice that the very large
headings of the document parts are too bold. You could change this as follows:

\setkomafont{disposition}{\normalcolor\maybesffamily}
\part{Appendices}
\addtokomafont{disposition}{\bfseries}

Using the command above you only switch off the font attribute bold for a heading

Table 3.15.: Default font
sizes for different levels
of document sectioning in
scrbook and scrreprt

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Class Option Element Default
headings=big part \Huge
partnumber \huge
chapter \huge
chapterprefix \usekomafont{chapter}
section \Large
subsection \large
subsubsection \normalsize
paragraph \normalsize
subparagraph \normalsize
headings=normal part \huge
partnumber \huge
chapter \LARGE
chapterprefix \usekomafont{chapter}
section \Large
subsection \large
subsubsection \normalsize
paragraph \normalsize
subparagraph \normalsize
headings=small part \LARGE
partnumber \LARGE
chapter \Large
chapterprefix \usekomafont{chapter}
section \large
subsection \normalsize
subsubsection \normalsize
paragraph \normalsize
subparagraph \normalsize

“Appendices”. A much more convenient and elegant solution is to change all \part
headings at once. This is done either by:

\addtokomafont{part}{\normalfont\maybesffamily}

\addtokomafont{partnumber}{\normalfont\maybesffamily}

or simply:

\addtokomafont{part}{\mdseries}

\addtokomafont{partnumber}{\mdseries}

The second version is preferred because it gives you the correct result even if you

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

change the disposition element, for instance:
\setkomafont{disposition}{\normalcolor\bfseries}

With this change, it is possible to set all section levels at once to no longer use sans
serif fonts.

I strongly advise against using the ability to switch fonts in order to mix fonts, font sizes,
and font attributes wildly. Picking the right font for the job is a matter for experts and has
almost nothing to do with the personal tastes of non-experts. See the citation at the end of
section 2.8, page 52 and to the following explanation.

It is possible to use different font types for different sectioning levels in KOMA-Script. Non-
experts in typography should absolutely avoid doing so for excellent typographical reasons.

A rule of typography states that you should mix as few fonts as possible. Using sans serif for
headings already seems to violate this rule. However, you should realize that large, bold, serif
letters are much too heavy for headings. Strictly speaking, you should then use a normal instead
of a bold or semi-bold font. However, in deeper levels of the sectioning, a normal font may then
appear too light. On the other hand, sans serif fonts have a very pleasant appearance in headings,
and almost solely in headings. There is, therefore, good reason why sans serif is the default in
KOMA-Script.

Greater variety should, however, be avoided. Font mixing is something for professionals. For
this reason, if you want to use fonts other than the standard TEX fonts—regardless of whether
these are CM, EC, or LM fonts—you should consult an expert about the compatibility of the
sans serif and serif fonts, or redefine the element disposition as a precautionary measure. The
author considers the commonly encountered combinations of Times and Helvetica or Palatino with
Helvetica to be awkward.

\part*{heading
\chapter*{heading}
\section*{heading}
\subsection*{heading}
\subsubsection*{heading}
\paragraph*{heading}
\subparagraph*{heading }

The starred variants of all sectioning commands produce unnumbered headings which do not
appear in the table of contents or in the running head. The absence of a running head often has
an unwanted side effect. If, for example, a chapter set using \chapter* spans several pages,
then the running head of the previous chapter suddenly reappears. KOMA-Script offers a
solution for this problem, described below. \chapter* only exists in book and report classes,
that is, book, scrbook, report and scrreport, not in the article classes article and scrartcl.
Please note that \part and \chapter change the page style for one page. While the standard
classes use the plain page style, KOMA-Script applies the style defined in the \partpagestyle

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

book,
scrreprt

and \chapterpagestyle macros (see section 3.12, page 83).

The possibilities for switching fonts described above for the unstarred variants apply without
change. The elements use the same names since they do not indicate variants but structuring
levels.

\addpart [short version]{heading}
\addpart*{heading}
\addchap [short version]{heading}
\addchap*{heading}
\addsec[short version]{heading}
\addsec*{heading}

In addition to the commands of the standard classes, KOMA-Script offers the new com-
mands \addpart, \addsec and \addchap. They are similar to the standard commands \part,
\chapter and \section except that they are unnumbered. They thus produce both a run-
ning head and an entry in the table of contents which take into account the headings option
settings, especially the handling of the optional argument. However, enabling or disabling the
nonumber switch will have no effect.

The starred variants \addchap* and \addsec* are similar to the standard commands
\chapter* and \section#* except for a small but important difference: the running heads
are deleted. This eliminates the side effect of obsolete headers mentioned above. Instead,
the running heads on subsequent pages remain empty. \addchap and \addchap* only exist,
of course, in book and report classes, namely book, scrbook, report and scrreport, not in the
article classes article and scrartcl.

The \addpart command produces an unnumbered document part with an entry in the table
of contents. Since the running heads are already deleted by \part and \part* the previously
mentioned problem with obsolete headers does not exist. The starred version \addpart* is
thus identical to \part#* and is only defined for reasons of consistency.

Please note that \addpart and \addchap and their starred variants change the page style
for one page. The particular page style is defined in the macros \partpagestyle and
\chapterpagestyle (see section 3.12, page 83).

The possibilities for switching fonts described above for the unstarred variant of the sec-
tioning commands apply without change. The elements have the same names since they do
not designate variants but sectioning levels.

\minisec{heading}

Sometimes you want a heading that is highlighted but also closely linked to the following text.
Such a heading should not be separated by a large vertical skip.

The \minisec command is designed for this situation. This heading is not associated with
any sectioning level. Such a mini-section does not produce an entry in the table of contents,
nor does it receive any numbering.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

You can change the font of the \minisec command using the disposition and minisec
element (see table 3.2, page 59). The default of the minisec element is empty, so by default
only the disposition element is used.

Example: You have developed a kit for building a mouse trap and want the documentation
separated into a list of necessary items and an assembly description. You could
write the following:

\documentclass{scrartcl}
\begin{document}

\title{DIY Projects}
\author{Two Left Thumbs}
\date{\today}

\maketitle

\section{Mousetrap}

The first project is suitable for beginners and only requires
a few components that should be found in every household.

\minisec{Material Required}

\begin{flushleft}

1 board ($100\times 50 \times 12$)\\
swing-top cap of a beer-bottlel\\
ballpoint pen\\
push pin\\
screws\\
hammer\\

1 knife
\end{flushleft}

N I

\minisec{Assembly}

First, find the mouse hole and put the push pin directly behind
the hole so that the mouse cannot escape during the following
actions.

Next tap the swing-top cap into the mouse hole with the hammer.

If the cap is not big enough to block the hole completely and

permanently, take the board instead and screw it to the front

of the mouse hole using the two screws and the knife. Of

course, you can use a screwdriver instead of a knife. The

ballpoint pen has fallen victim to animal welfare.
\end{document}

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

The main part, starting with the heading “Material Required” will look like this:
T Material Required ——m—]

1 board (100 x 50 x 12)

1 swing-top cap of a beer-bottle
1 ballpoint pen

1 push pin

2 screws

1 hammer

1 knife

Assembly
First, find the mouse hole and put the push pin directly behind the hole so
that the mouse cannot escape during the following actions.

Next tap the swing-top cap into the mouse hole with the hammer. If
the cap is not big enough to block the hole completely and permanently,
take the board instead and screw it to the front of the mouse hole using
the two screws and the knife. Of course, you can use a screwdriver instead
of a knife. The ballpoint pen has fallen victim to animal welfare.

S

\raggedsection

\raggedchapter

\raggedpart

In the standard classes, headings are set as justified text. That means that hyphenated words
can occur and multi-line headings are stretched up to the text width. This approach is rather
uncommon in typography. KOMA-Script therefore sets the headings left aligned with hanging
indentation using \raggedsection with the default:

\newcommand*{\raggedsection}{\raggedright}

You can redefine this command with \renewcommand.

Example: You prefer justified headings, so you write in the preamble of your document:
\renewcommand*{\raggedsection}{}
or more compactly:
\let\raggedsection\relax
You will get heading formatting which is very close to that of the standard classes.

It will become even closer when you combine this change with the change to the
disposition element mentioned above.

Because some users want a different alignment for the \chapter level than for the
other sectioning levels, you can change the \chapter justification separately by redefining
\raggedchapter. By default, however, this command simply uses \raggedsection, so chang-
ing \raggedsection indirectly affects \raggedchapter.

By default, part headings (\part) are set horizontally centred rather than ragged right.
This formatting is performed by the \raggedpart statement, which has the default definition

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

\let\raggedpart\centering

You can also redefine this command using \renewcommand.

Example: You want the headings for \part to be formatted the same as any other sectioning
command. To do so, put

\renewcommand*{\raggedpart}{\raggedsection}

in the preamble of your document. In this case, and unlike in the example above,
we did not use \1let because \let would set \raggedpart to the underlying value of
\raggedsection. Subsequent changes to \raggedsection would then not change
the behaviour of \raggedpart. By redefining with \renewcommand, \raggedpart
will use the current meaning of \raggedsection at the time it is used rather than
when it was redefined.

\partformat

\chapterformat

\sectionformat

\subsectionformat

\subsubsectionformat

\paragraphformat

\subparagraphformat

\othersectionlevelsformat{sectioning name}{}{counter output}
\IfUsePrefixLine{then codel}{else code}

\autodot

KOMA-Script adds another logical layer above \thesectioning name to format the section-
ing numbers. The counters for each heading are not merely output. They are formatted using
the commands \partformat, \chapterformat, down to \subparagraphformat. Of course
the \chapterformat command, like \thechapter, does not exist in the scrartcl class, but
only in the scrbook and scrreprt classes.

As already explained for the numbers option at the beginning of this section (see page 99),
KOMA-Script’s handling of points in section numbers implements the rules given in [DUD96],
which are standard in German-language typography, in the \autodot command. In all levels
except for \part, a point is followed by a further \enskip. This corresponds to a horizontal
skip of 0.5em.

Since KOMA-Script 3.17, the command \othersectionlevelsformat is used only in rare
circumstances, i.e., if the corresponding format command to a section command does not
exist or is \relax. This should not happen for any section commands defined by KOMA-
Script itself. Therefore the command is no longer officially documented. Nevertheless, if you
select a compatibility level prior to 3.17 (see option version, section 3.2, page 55), commands
\sectionformat down to \subparagraphformat are ignored by KOMA-Script. Instead, these
layers will continue to use \othersectionlevelsformat.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

You can redefine the formatting commands using \renewcommand to fit them to your per-
sonal needs. The following default definitions are used by the KOMA-Script classes:

\newcommand*{\partformat}{\partname~\thepart\autodot}
\newcommand*{\chapterformat}{/
\mbox{\chapappifchapterprefix{\nobreakspace}\thechapter
\autodot\IfUsePrefixLine{}{\enskip}}}
\newcommand*{\sectionformat}{\thesection\autodot\enskip}
\newcommand*{\subsectionformat}{/
\thesubsection\autodot\enskip}
\newcommand*{\subsubsectionformat}{/
\thesubsubsection\autodot\enskip}
\newcommand*{\paragraphformat}{\theparagraph\autodot\enskip}
\newcommand*{\subparagraphformat}{/
\thesubparagraph\autodot\enskip}
\newcommand*{\othersectionlevelsformatl} [3]{/
#3\autodot\enskip}

Because it uses \IfUsePrefixLine, \chapterformat should not be used outside of
\chapter. \IfUsePrefixLine is only valid inside KOMA-Script sectioning commands.
Within those commands, it executes the then code if a prefix line for the number is used and
the else code otherwise.

Please also remember to replace \newcommand with \renewcommand if you want to redefine
one of the commands above.

Example: Suppose you do not want the word “Part” written in front of the part number
when you use \part. You can put the following command in the preamble of your
document:

\renewcommand*{\partformat}{\thepart\autodot}

In fact, you could do without \autodot here and insert a fixed point instead. Since
\part is numbered with Roman numerals, it must be followed by a point according
to [DUD96]. However, by using \autodot you retain the ability to use the numbers
option numbers=endperiod and thus deviate from the rule. You can find more
details concerning class options on page 99.

Another possibility is to place the section numbers in the left margin in such a way
that the heading text is left aligned with the surrounding text. You can accomplish
this with:

\renewcommand*{\sectionformat}{/

\makebox [Opt] [r]{\thesection\autodot\enskipl}}
\renewcommand*{\subsectionformat}{/

\makebox [Opt] [r]{\thesubsection\autodot\enskip}}
\renewcommand*{\subsubsectionformat}{/

\makebox [Opt] [r1{%

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrbook,
scrreprt

\thesubsubsection\autodot\enskip}}
\renewcommand*{\paragraphformat}{/
\makebox [Opt] [r]{\theparagraph\autodot\enskipl}}
\renewcommand*{\paragraphformat}{/
\makebox [Opt] [r1{%
\thesubparagraph\autodot\enskip}}

The optional arguments of the \makebox command require IXTEX to create a zero-
width box with right-justified content. As a result, the contents of the box are
output to the left of the current position. You can find more about the optional
arguments of \makebox in [Tea05b].

For formatting changes in the headings that go beyond merely formatting the unit num-
ber, please refer to \partlineswithprefixformat, \chapterlineswithprefixformat
and \chapterlinesformat, as well as \sectionlinesformat and its
\sectioncatchphraseformat format in section 21.8, starting from page 493.

It is expressly stated that the package polyglossia redefines some of the instructions docu-
mented here depending on the language. This concerns, for example, the language settings
russian and hungarian. For more details, see its manual [CRSR22].

\chapappifchapterprefix{additional tezt}
\chapapp

These two commands are used internally by KOMA-Script and also made available to the
user. Later, you will see how to use them, for example to redefine other commands.

If you use the layout option chapterprefix=true (see page 96), \chapappifchapterprefix
outputs the word “Chapter” in the body of the text in the current language, followed by
additional tezt. In the appendix, the word “Appendix” in the current language is output
instead, followed by additional tezt. If the option maincls=chapterprefixfalse is set,
then nothing is output.

The \chapapp command always outputs the word “Chapter” or “Appendix”, regardless of
the setting of the chapterprefix option.

Since chapters only exist in the classes scrbook and scrreprt, these commands only exist in
these classes.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

scrartcl

\chaptermark{running head}
\addchapmark{running head}
\sectionmark{running head}
\addsecmark{running head}
\subsectionmark{running head}
\chaptermarkformat
\sectionmarkformat
\subsectionmarkformat

As mentioned in section 3.12, the headings page style works with automatic running
heads. For this, the commands \chaptermark and \sectionmark, or \sectionmark and
\subsectionmark, are defined accordingly. Every sectioning command (\chapter, \section,
etc.) automatically executes the corresponding \...mark command. The parameter passed con-
tains the text of the section heading. The corresponding section number is added automatically in
the \...mark command. The formatting is done according to the sectioning level with one of the
three commands \chaptermarkformat, \sectionmarkformat, or \subsectionmarkformat.

Note that the running heads of \addchap and \addsec are also based on \chaptermark
and \sectionmark. However, the secnumdepth counter is set locally to a value that switches
off the numbering of chapters or sections. You should consider this, for example, if you rede-
fine \chaptermark or \sectionmark (see \Ifnumbered on page 113). The starred variants
\addchap* and \addsec* use additional commands \addchapmark and \addsecmark that are
also defined based on \chaptermark and \sectionmark with local changes of secnumdepth.

Although there is no \chaptermark or \chaptermarkformat command in scrartcl, there are
two commands, \subsectionmark and \subsectionmarkformat, which exist only in scrartcl.
However using the scrlayer-scrpage package changes this (see chapter 5).

Just as numbers in the sectioning-command headers are formatted with \partformat
down to \subparagraphformat, \chaptermarkformat, \sectionmarkformat, and
\subsectionmarkformat define the formatting of the sectioning numbers in the auto-
matic running heads. They can be adapted to your personal needs with \renewcommand. The
original definitions for the KOMA-Script classes are:

\newcommand*{\chaptermarkformat}{/
\chapappifchapterprefix{\ }\thechapter\autodot\enskip}

\newcommand*{\sectionmarkformat}{/
\thesection\autodot\enskip}

\newcommand*{\subsectionmarkformat}{/
\thesubsection\autodot\enskip}

Example: Suppose you want the word “Chapter” to precede the chapter number in the running
head. You could put the following definition in the preamble of your document:

\renewcommand*{\chaptermarkformat}{/
\chapapp~\thechapter\autodot\enskip}

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

As you can see, both \chapapp and \chapappifchapterprefix, explained above, are used
here.

secnumdepth
\partnumdepth
\chapternumdepth
\sectionnumdepth
\subsectionnumdepth
\subsubsectionnumdepth
\paragraphnumdepth
\subparagraphnumdepth

Normally, the scrbook and scrreport classes number the section headings from \part down to
\subsection and the scrartcl class numbers them from \part down to \subsubsection. The
actual depth to which headings are numbered is controlled by the IXTEX counter secnumdepth.

To save users the trouble of having to remember abstract numbers, the commands
\partnumdepth to \subparagraphnumdepth return the appropriate number for the section
level in their name.

Example: For a book project, you want the section levels from part down to section to be
numbered. To achieve this, you have to set counter secnumdepth to the value
represented by \sectionnumdepth in the preamble of your document:

\setcounter{secnumdepth}{\sectionnumdepth}

No provision is made for redefining these commands. Doing so could lead to unexpected
results, not only with KOMA-Script but also with third party packages. Thus, you should
never redefine them.

Do not confuse the secnumdepth and tocdepth counters (see section 3.9, page 76). Depend-
ing on the class you are using, the meaning of the values of the secnumdepth and tocdepth
counters may differ for the same section level.

\Ifnumbered{section level }{then codel}{else code}
\Ifunnumbered{section level }{then codel}{else code}

The commands \Ifnumbered and \Ifunnumbered determine which section-level headings are
numbered, using the technique described above, and execute code depending on whether
a section level is numbered or not. If a section level is numbered with the cur-
rent settings, \Ifnumbered executes the then code. If the section level is unnumbered,
the else code is executed. The \Ifunnumbered command behaves in exactly the oppo-
site manner, executing the then code if the current level is unnumbered and the else
code if it is. The section level parameter is simply the IATEX name of a section like

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

part, chapter, section, subsection, subsubsection, paragraph oder subparagraph.part,
chapter, section, subsection, subsubsection, paragraph, or subparagraph.

KOMA-Script itself uses these tests, for example, in the definition of \chaptermark in the
headings page style. This indirectly ensures that headings inserted by \addchap do not set
a number inside the running head (see also \addchapmark, page 112).

\setpartpreamble[position] [width]{preamble}
\setchapterpreamble [position] [width]{preamble}

scrbook, Parts and chapters in KOMA-Script can be given a preamble. This is particularly useful

scrreprt when you are using a two-column format with the class option twocolumn, since the heading
and the preamble are always set in a one-column layout. The preamble can contain more
than one paragraph. The command to set the preamble must come before the respective
\part, \addpart, \chapter, or \addchap command.

Example: You are writing a report about the condition of a company. You organize the report
in such a way that every department gets its own partial report. Each of these parts
should be introduced by an abstract on the corresponding title page. You could
write the following:

\setpartpreamble{/
\begin{abstract}
This is a filler text. It serves merely to demonstrate the
capabilities of {\KOMAScript}. If you read this text, you will
get no information.
\end{abstract}

}
\part{Department for Word Processing}

Depending on the settings for the heading font size (see page 96) and the options for

the abstract environment (see section 3.8, page 71), the result will look something
like this:

——— T ———

Part IlI.

Department for Word Processing

Abstract

This is a filler text. It serves merely to demonstrate the capabilities
of KOMA-Script. If you read this text, you will get no information.
%

Please note that you are responsible for the spacing between the heading, preamble, and the
following text. Note also that there is no abstract environment in the scrbook class (see
section 3.8, page 71).

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

The first optional argument, position, determines the position at which the preamble is
placed with the help of one or two letters. For vertical placement there are two possibilities
at present:

o — above the heading
u — below the heading

You can therefore put one preamble above and another below a heading. For horizontal
placement you have three options:

1 — left-aligned
r — right-aligned

c — centred

This setting does not affect the alignment of the text in the preamble. Instead, it aligns the
box that contains the preamble. The width of this box is determined by the second optional
argument, width. If you omit this second argument, the box uses the full text width. In that
case, the option for horizontal positioning has no effect. You can combine exactly one letter
from the vertical with one letter from the horizontal positioning.

A typical use for \setchapterpreamble would be something like an epigraph, a wise saying,
or a dictum. The \dictum command, which you can use for this purpose, is described in the
next section. You will also find an example there.

Please note that a preamble placed above the heading is set within the existing vertical
space above the heading. The heading will not be moved down. You are therefore responsible
for ensuring that the preamble is not too large and that the space above the heading is
sufficient. See also the beforeskip setting for \RedeclareSectionCommand in section 21.8,
table 21.3, page 485.

3.17. Dicta

A common element in a document is an epigraph or quotation that is set above or below
a chapter or section heading, along with a reference to the source and its own formatting.
KOMA-Script refers to such an epigraph as a dictum.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.16.: Default

settings ~ for the Element Default
elements of a dictum

dictum \normalfont\normalcolor\maybesffamily\small
dictumauthor \itshape

\dictum[author]l{tezt?}
\dictumwidth
\dictumauthorformat{author}
\dictumrule

\raggeddictum
\raggeddictumtext
\raggeddictumauthor

You can set such a saying with the help of the \dictum command. This macro can be included
in the mandatory argument of either the \setchapterpreamble or the \setpartpreamble
command. However, this is not obligatory.

The dictum, along with an optional author, is inserted in a \parbox (see [Tea05b])
of width \dictumwidth. However, \dictumwidth is not a length which can be set with
\setlength. It is a macro that can be redefined using \renewcommand. The default is
0.3333\textwidth, which is one third of the text width. The box itself is aligned with the com-
mand \raggeddictum. The default is \raggedleft, that is, right justified. \raggeddictum
can be redefined with the help of \renewcommand.

You can align the dictum within the box using \raggeddictumtext. The de-
fault is \raggedright, that is, left justified. ~You can also redefine this macro with
\renewcommand.The output uses the default font setting for the element dictum, which can be
changed with the commands \setkomafont and \addtokomafont (see section 3.6, page 58).
Default settings are listed in table 3.16.

If an author is defined, it is separated from the dictum by a horizontal rule spanning the
full width of the \parbox. This rule is defined in \dictumrule as a vertical object with

\newcommand*{\dictumrule}{\vskip-lex\hrulefill\par}

The \raggeddictumauthor command defines the alignment for the rule and the author.
The default is \raggedleft. This command can also be redefined using \renewcommand. The
format is defined with \dictumauthorformat. This macro expects the author text as its
argument. By default \dictumauthorformat is defined as

\newcommand*{\dictumauthorformat} [1]{(#1)}

Thus the author is set enclosed in rounded parentheses. For the dictumauthor element,
you can define a different font than that used for the dictum element. The default settings
are listed in table 3.16. Changes can be made using the \setkomafont and \addtokomafont
commands (see section 3.6, page 58).

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

If you use \dictum within the \setchapterpreamble or \setpartpreamble macro,
\textwidth is not the width of the whole text body but the current text width. If
\dictumwidth is set to .5\textwidth and \setchapterpreamble has an optional width of
.5\textwidth too, you will get a box with a width one quarter of the text width. The hor-
izontal positioning of the dictum inside the box is always done with \raggeddictum. The
optional argument for horizontal positioning which is implemented for these two commands
has no effect to the \text. If you use \dictum you should refrain from setting the optional
width for \setchapterpreamble or \setpartpreamble.

If you have more than one dictum, one under another, you should separate them by an
additional vertical space, which is easily accomplished using the \bigskip command.

Example: You are writing a chapter about modern marriage, and you want to place a dictum
in the preamble to the chapter heading. You write:

\setchapterpreamble [u] {4
\dictum[Schiller]{So pause ye who would link your fates~\dots}}
\chapter{Modern Marriage}

The output would look as follows:

17 Modern Marriage

So pause ye who would link
your fates ...

(Schiller)

If you want the dictum to span only a quarter of the text width rather than a third,
you can redefine \dictumwidth this way:

\renewcommand*{\dictumwidth}{.25\textwidth}

3.18. Lists

Both KTEX and the standard classes offer different environments for lists. Naturally, KOMA-
Script also offers all these environments, though slightly modified or extended in some cases.
In general, all lists—even those of different kinds—can be nested up to four levels deep.
From a typographical view, anything more would make no sense, as lists of more than three
levels cannot easily be apprehended. In such cases, I recommend that you split a large list
into several smaller ones.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\begin{itemize}
\item ...

\eﬁd{itemize}
\labelitemi
\labelitemii
\labelitemiii
\labelitemiv

The simplest form of a list is the itemized list, itemize. Depending on the level, KOMA-Script

13 ” W_» Wy ”n ”

classes use the following marks: “e”, , “x” and “ -7 The definition of these symbols is
specified in the macros \labelitemi, \labelitemii, \labelitemiii, and \labelitemiv,
all of which you can redefine using \renewcommand. With the KOMA-Script classes the
fonts used to format the symbols for the different levels can be changed using \setkomafont
and \addtokomafont (see section 3.6, page 58) for the elements labelitemi, labelitemii
labelitemiii and labelitemiv. By default these all use the font setting for element
itemizelabel. Only element labelitemii additionally uses \bfseries. The default of
itemizelabel itself is \normalfont. Every item is introduced with \item.

Example: You have a simple list which is nested in several levels. You write, for example:

\minisec{Vehicles in the game}
\begin{itemize}
\item aeroplanes
\begin{itemize}
\item biplane
\item transport planes
\begin{itemize}
\item single-engine
\begin{itemize}
\item jet propelled
\item propeller driven
\end{itemize}
\item twin-engine
\begin{itemize}
\item jet propelled
\item propeller driven
\end{itemize}
\end{itemize}
\item helicopters
\end{itemize}
\item motorcycles
\item automobiles
\begin{itemize}
\item racing cars
\item passenger cars

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\item lorries
\end{itemize}
\item bicycles

\end{itemize}

As output you get:
[Vehicles in the game =~ —— |
e aeroplanes
— biplanes
— transport planes
* single-engine
- jet-propelled
- propeller-driven
* twin-engine
- jet propelled
- propeller driven

— helicopters
e motorcycles

e automobiles
— racing cars
— passenger cars

— lorries

o bicycles
%

\begin{enumerate}
\item ...

\ehd{enumerate}

\theenumi

\theenumii

\theenumiii

\theenumiv

\labelenumi

\labelenumii

\labelenumiii

\labelenumiv

The numbered list is also very common and already provided by the IXTEX kernel. The number-
ing differs according to the level, with Arabic numbers, small letters, small Roman numerals,
and capital letters, respectively. The style of numbering is defined with the macros \theenumi
down to \theenumiv. The output format is determined by the macros \labelenumi to

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\labelenumiv. While the small letter of the second level is followed by a right parenthe-
sis, the values of all other levels are followed by a dot. Every item is introduced with \item.

Example: Let’s shorten the previous example, using an itemize environment instead of the
enumerate environment:
" Vehicles in the game =~ —=——
1. aeroplanes
a) biplanes
b) transport planes
i. single-engine
A. jet-propelled
B. propeller-driven

ii. twin-engine

2. motorcycles
a) historically accurate

b) futuristic, not real
%

Within the list, you can set labels in the normal way with \1abel and then reference
then with \ref. In the example above, a label was set after the jet-propelled,

single-engine transport planes with “\label{xmp: jets}”. The \ref value is then
“I(b)iA”.

\begin{description}
\item[keyword] ...
\ehd{description}

Another list form is the description list. It primarily serves to describe individual items or
keywords. The item itself is specified as an optional parameter in \item. The font used to
format the keyword can be changed with the \setkomafont and \addtokomafont commands
(see section 3.6, page 58) for the descriptionlabel element (see table 3.2, page 59). The
default is \maybesffamily\bfseries.

Example: You want the keywords to be printed bold and in the normal font instead of bold
and sans serif. Using
\setkomafont{descriptionlabel}{\normalfont\bfseries}
you redefine the font accordingly.

An example for a description list is the output of the page styles listed in sec-
tion 3.12. The (abbreviated) source is:

\begin{description}
\item[empty] is the page style without any header or footer.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\item[plain] is the page style without headings.

\item[headings] is the page style with running headings.

\item[myheadings] is the page style for manual headings.
\end{description}

This gives:
%

empty is the page style without any header or footer.
plain is the page style without headings.
headings is the page style with running headings.

myheadings is the page style for manual headings.

U

\begin{labeling}[delimiter]{widest pattern}
\item[keyword]...

\eﬁd{labeling}

Another form of description list is only available in the KOMA-Script classes: the labeling
environment. Unlike the description described above, you can specify a pattern for labeling
whose length determines the indentation of all items. Furthermore, you can put an optional

delimiter between the item and its description. The font used to format the item and
the separator can be changed with the \setkomafont and \addtokomafont commands (see
section 3.6, page 58) for the element labelinglabel and labelingseparator (see table 3.2,
page 59).

Example: Slightly changing the example from the description environment, we could write
the following:

\setkomafont{labelinglabel}{\ttfamily}
\setkomafont{labelingseparator}{\normalfont}
\begin{labeling} [~--]{myheadings}
\item[empty]
Page style without header or footer
\item[plain]
Page style for chapter beginnings without headings
\item[headings]
Page style for running headings
\item[myheadings]
Page style for manual headings
\end{labeling}

The result is this:

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

e

empty — Page style without header or footer
plain — Page style for chapter beginnings without headings
headings — Page style for running headings

myheadings — Page style for manual headings

%
As this example shows, you can set a font-changing command in the usual way.
But if you do not want the font of the separator to be changed in the same way as
the font of the label, you have to set the font of the separator as well.

Originally, this environment was implemented for things like “Premise, Evidence, Proof”, or
“Given, Find, Solution” that are often used in lecture handouts. These days, however, the
environment has very different applications. For example, the environment for examples in
this guide was defined with the labeling environment.

\begin{verse}...\end{verse}

The verse environment is not normally perceived as a list environment because you do not
work with \item commands. Instead, fixed line breaks are used within the flushleft envi-
ronment. Internally, however, both the standard classes as well as KOMA-Script implement
it as a list environment.

In general, the verse environment is used for poetry. Lines are indented both left and right.
Individual lines of verse are ended by a fixed line break: \\. Verses are set as paragraphs,
separated by an empty line. Often also \medskip or \bigskip is used instead. To avoid a
page break at the end of a line of verse you can, as usual, insert * instead of \\.

Example: As an example, Emma Lazarus’s sonnet from the pedestal of Liberty Enlightening
the World?:

\begin{verse}
Not like the brazen giant of Greek fame\\x*
With conquering limbs astride from land to land*
Here at our sea-washed, sunset gates shall stand*
A mighty woman with a torch, whose flame*
Is the imprisoned lightning, and her name*
Mother of Exiles. From her beacon-hand*
Glows world-wide welcome; her mild eyes command*
The air-bridged harbor that twin cities frame.*
‘‘Keep, ancient lands, your storied pomp!’’ cries she*
With silent lips. ‘‘Give me your tired, your poor,*
Your huddled masses yearning to breathe free,*

2The lines from Roald Dahl’s poem “Little Red Riding Hood and the Wolf”, which was used in former releases,
has been replaced, because in these times certain politicians around the world really seem to need “The
New Colossus” as urgent reminder.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

The wretched refuse of your teeming shore.*

Send these, the homeless, tempest-tossed to me:*

I 1ift my lamp beside the golden door.’’
\end{verse}

The result is as follows:

Not like the brazen giant of Greek fame

With conquering limbs astride from land to land
Here at our sea-washed, sunset gates shall stand

A mighty woman with a torch, whose flame

Is the imprisoned lightning, and her name

Mother of Exiles. From her beacon-hand

Glows world-wide welcome; her mild eyes command
The air-bridged harbor that twin cities frame.
“Keep, ancient lands, your storied pomp!” cries she
With silent lips. “Give me your tired, your poor,
Your huddled masses yearning to breathe free,

The wretched refuse of your teeming shore.

Send these, the homeless, tempest-tossed to me:

I lift my lamp beside the golden door.”
%

However, if you have very long lines of verse where a line break occurs within a line
of verse:

\begin{verse}
Both the philosopher and the house-owner
always have something to repair.*
\bigskip
Don’t trust a man, my son, who tells you
that he has never lied.

\end{verse}

Both the philosopher and the house-owner always have some-
thing to repair.

Don’t trust a man, my son, who tells you that he has never lied.

in this case * can not prevent a page break occurring within a verse at such a
line break. To prevent such a page break, a change of \interlinepenalty would
have to be inserted at the beginning of the environment:

\begin{verse}\interlinepenalty 10000
Both the philosopher and the house-owner
always have something to repair.\\
\bigskip
Don’t trust a man, my son, who tells you
that he has never lied.

\end{verse}

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Here are two sayings that should always be considered when confronted with seem-
ingly strange questions about IATEX or its accompanying explanations:

\begin{verse}
A little learning is a dangerous thing.\\x*
Drink deep, or taste not the Pierian Spring;\\
\bigskip
Our judgments, like our watches, none*
go just alike, yet each believes his own.
\end{verse}

A little learning is a dangerous thing.
Drink deep, or taste not the Pierian Spring;

Our judgments, like our watches, none
go just alike, yet each believes his own.

Incidentally, \bigskip was used in these examples to separate two sayings.

\begin{quote}...\end{quote}
\begin{quotation}...\end{quotation}

These two environments are also set internally as list environments and can be found in both
the standard and the KOMA-Script classes. Both environments use justified text which is
indented on both the left and the right side. Often they are used to separate longer quotations
from the main text. The difference between the two lies in in the manner in which paragraphs
are typeset. While quote paragraphs are distinguished by vertical space, in quotation para-
graphs, the first line is indented. This also applies to the first line of a quotation environment,
unless it is preceded by \noindent.

Example: You want to highlight a short anecdote. You write the following quotation envi-
ronment for this:

A small example for a short anecdote:
\begin{quotation}
The old year was turning brown; the West Wind was
calling;

Tom caught the beechen leaf in the forest falling.
‘‘I’ve caught the happy day blown me by the breezes!

Why wait till morrow-year? I’1ll take it when me pleases.
This I’11 mend my boat and journey as it chances

west down the withy-stream, following my fancies!’’

Little Bird sat on twig. ‘‘Whillo, Tom! I heed you.
I’ve a guess, I’ve a guess where your fancies lead you.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Shall I go, shall I go, bring him word to meet you?’’
\end{quotation}

The result is:
%

A small example for a short anecdote:

The old year was turning brown; the West Wind was calling;
Tom caught the beechen leaf in the forest falling. “I've caught
the happy day blown me by the breezes! Why wait till morrow-
year? DI’ll take it when me pleases. This I'll mend my boat and
journey as it chances west down the withy-stream, following my
fancies!”
Little Bird sat on twig. “Whillo, Tom! I heed you. I've a
guess, I've a guess where your fancies lead you. Shall I go, shall
I go, bring him word to meet you?”
%
Using a quote environment instead you get:
%

A small example for a short anecdote:

The old year was turning brown; the West Wind was calling;

Tom caught the beechen leaf in the forest falling. “I’ve caught
the happy day blown me by the breezes! Why wait till morrow-
year? I’ll take it when me pleases. This I'll mend my boat and
journey as it chances west down the withy-stream, following my
fancies!”

Little Bird sat on twig. “Whillo, Tom! I heed you. I've a guess,
T've a guess where your fancies lead you. Shall I go, shall T go,

bring him word to meet you?”
%

\begin{addmargin}[left indentation]{indentation}...\end{addmargin}
\begin{addmarginx} [inner indentationl{indentation}...\end{addmargin*}

Like quote and quotation, the addmargin environment changes the margin. However, unlike
the first two environments, addmargin lets the user change the width of the indentation. Apart
from this change, this environment does not change the indentation of the first line nor the
vertical spacing between paragraphs.

If only the obligatory argument indentation is given, both the left and right margin are
expanded by this value. If the optional argument left indentation is given as well, then
the value left indentation is used for the left margin instead of indentation.

The starred variant addmargin* differs from the normal version only in the two-sided mode.
Furthermore, the difference only occurs if the optional argument inner indentation is used.
In this case, the value of inner indentation is added to the normal inner indentation. For
right-hand pages this is the left margin; for left-hand pages, the right margin. Then the value
of indentation determines the width of the opposite margin.

Both versions of this environment allow negative values for all parameters. This can be
done so that the environment protrudes into the margin.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Example: \newenvironment{SourceCodeFrame}{/
\begin{addmargin*}[1em] {-1em}/
\begin{minipage}{\linewidth}/
\rule{\linewidth}{2pt}/

HZ
\rule[.25\baselineskip] {\linewidth}{2pt}/
\end{minipagel}/
\end{addmargin*}/
}

If you now put your source code in such an environment, it will show up as:
%

You define the following environment:

\newenvironment{\SourceCodeFrame}{/
\begin{addmargin*} [1lem]{-1lem}
\begin{minipage}{\linewidth}/
\rule{\linewidth}{2pt}/
HZ
\rule[.25\baselineskip]{\linewidth}{2pt}/
\end{minipage} %
\end{addmargin*}}
}

This may be feasible or not. In any case, it shows the usage of this envi-

ronment.
%

The optional argument of the addmargin* environment makes sure that the inner
margin is extended by lem. In turn the outer margin is decreased by 1em. The
result is a shift by 1em to the outside. Instead of lem, you can of course use a
length, for example, 2\parindent.

Whether a page is going to be on the left or right side of the book cannot be determined
reliably on the first A TEX run. For details please refer to the explanation of the commands
\Ifthispageodd (section 3.11, page 79) and \ifthispagewasodd (section 21.1).

The interplay of environments such as lists and paragraphs gives rise to frequent questions.
Therefore, you can find further explanation in the description of the parskip option in section 21.1.

3.19. Mathematics

KOMA-Script classes do not provide their own environments for formulas, systems of equa-
tions, or similar mathematical elements. Instead, KOMA-Script relies fully on the maths
features of the IATEX kernel. This also applies to the the options leqno and flegn.

You will not find a description of the maths environments of the IXTEX kernel here. If you
want to use displaymath, equation, or eqnarray you should read an introduction to IXTEX
like [OPHS11]. But if you want more than very simple mathematics, you should use the
amsmath package (see [Ame02]).

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

legno

Equations are normally numbered on the right. The leqno option loads the standard option
file 1legno.clo. The equations are then numbered on the left. You must use this option
as an optional argument of \documentclass. Using it as an argument of \KOMAoptions or
\KOMAoption is not supported. The latter would not make sense because the recommended
maths package amsmath can only respond to this option at load time and does not react to
run-time changes of the option.

flegn

Displayed equations are normally centred. The standard option fleqn loads the standard
option file fleqn.clo. Displayed equations are then left-justified. You must use this option
as an optional argument of \documentclass. Using it as an argument of \KOMAoptions or
\KOMAoption is not supported. The latter would not make sense because the recommended
maths package amsmath can only respond to this option at load time and does not react to
run-time changes of the option.

3.20. Floating Environments for Tables and Figures

With the floating environments, INTEX offers a powerful and convenient mechanism to arrange
figures and tables automatically. Frequently, beginners do not properly understand these
floating environments. They often ask to specify the exact position of a table or figure within
the text. However, this is usually unnecessary, since the text will contain references to these
floating environments. It is also not sensible because such an object can only be set on the
page if there is enough space left for it. If this is not the case, the object would have to be
shifted onto the next page, possibly leaving a huge empty space on the previous page.

Often a document will use the same optional argument to position every floating object.
This also makes no sense. In such cases, you should instead change the default value globally.
For more details, see [Wik].

One final, important note before starting this section: most of mechanisms described here,
which extend the capabilities of the standard classes, no longer work correctly when used with
packages that modify the appearance of figure and table captions. This should be self-evident,
but it is often overlooked.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

\begin{figure}...\end{figure}
\begin{figurex}...\end{figurex}
\begin{figure-}...\end{figure-}
\begin{table}...\end{table}
\begin{table*}...\end{tablex*}
\begin{table-}...\end{table-3}

The KOMA-Script classes scrbook, scrreprt, and scrartcl use the \DeclareNewTOC statement
documented in section 15.6, page 406 to define the figure and table environments familiar
from the standard classes. Of course, this also defines the figure* and table* environments
provided for the two-column mode, which are intended for cross-column figures and tables at
the top of the page. Since in addition to the float setting the definition also uses nonfloat,
the non-floating environments figure- and table- are also defined. These can be used like the
other environments and ultimately span a minipage with appropriate spacing before and after
it. With mixed use of floating and non-floating environments, the user himself is responsible
for the correct order in output and thus in numbering.

captions=setting

In the standard classes, the titles of floating environments, which are formatted with the
\caption command (see below), are set off from the float with vertical spacing appropriate
for putting the caption beneath the float, like a signature. They also distinguish between
one-line and multi-line captions. One-line captions are centred while multi-line captions are
left-justified.

For tables, however, you want the caption to appear as a heading instead of a signature.
That’s because tables can span multiple pages. With such tables, the reader wants to know
the purpose of the table on the first page. Furthermore, tables are usually read row by row,
from top to bottom. So there are normally at least two good reasons to provide all tables with
headings. KOMA-Script therefore offers the captions=tableheading option, which changes
the formatting of table captions for use above the table.

Note that multi-page tabulars cannot use a floating environment. To have an automatic page
break in a tabular you need an additional package like longtable (see [Car04]) or supertabular
(see [BJO4]).

You can switch back to the default caption formatting using captions=tablesignature.
Note that these options change only the formatting, not the actual position of the caption.
Whether the caption is placed above or below a float depends solely upon where you use the
\caption command inside float environment. However, this can change when using the float
package with the \restylefloats command (see [Lin01]).

Of course, corresponding functions exist for figures using the options captions=
figureheading and captions=figuresignature. However, figures such as photos tend to be
viewed as a whole, and a diagram or graph will mostly be examined starting from the lower

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

float

left. Therefore, it only rarely makes sense to change the caption format for figures alone from
signatures to headings.

Sometimes, however, all floating environments should use headings. Therefore KOMA-
Script provides options captions=heading and captions=signature to switch the format of
every floating environment. These options can also be used inside a floating environment.

Please note when using the float package that the settings for signatures or headings will
no longer work once \restylefloat is applied to tables or figures. For details about the float
package and \restylefloat, please refer to [Lin0O1]. This also applies to \caption within new
floating environments defined with float. You can find additional support which KOMA-Script
provides when using the float package in the explanation of komaabove (see page 138). As an
alternative to float, you can also consult \captionof (see page 133) and \DeclareNewTOC (see
page 406). Additionally, when using float, the scrhack package is expressly recommended (see
chapter 16 from page 413 in part II).

Furthermore, KOMA-Script offers the option to disable the distinction between one-line and
multi-line captions using the captions=nooneline option. This can be useful, for example,
if you do not want one-line captions to be centred. The default, where one-line captions are
centred, corresponds to captions=oneline.

Another special feature of KOMA-Script is the ability to put the caption beside the floating
object rather than above or below it. For this, you need the environment captionbeside,
which is explained starting on page 135. The settings for this environment can also be changed
with the caption option. You can find the available values for the corresponding settings
in table 3.17.

Table 3.17.: Available values for the captions option for setting formatting of captions as headings or
signatures in floating environments

bottombeside, besidebottom
Captions for the captionbeside environment (see section 3.20, page 135) are verti-
cally aligned with the bottommost baseline of the contents of the floating environ-
ment.

centeredbeside, besidecentered, middlebeside, besidemiddle
Captions for the captionbeside environment (see section 3.20, page 135) are verti-
cally aligned with the center of the contents of the floating environment.

figureheading, figureabove, abovefigure, topatfigure
Captions for figures use heading format—possibly deviating from captions=
signature.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.17.: Available values for the captions option (continued)

figuresignature, belowfigure, bottomatfiggure
Captions for figures use signature format—possibly deviating from captions=
headings.

heading, above, top
Captions for floating environments use formatting suitable for use in a heading.
This setting does not control whether they are placed at the top or the bottom
of the object. This option also implies captions=tableheading and captions=
figureheading.

innerbeside, besideinner
Captions for the captionbeside environment (see section 3.20, page 135) are placed
inside of and next to the contents of the environment in two-sided printing. In
one-sided printing, captions=leftbeside is used.

leftbeside, besideleft
Captions for the captionbeside environment (see section 3.20, page 135) are placed
to the left of the contents of the floating environment.

nooneline
Single-line captions are handled the same as multi-line captions.

oneline
Single-line captions are centred horizontally.

outerbeside, besideouter
Captions for the captionbeside environment (see section 3.20, page 135) are placed
outside of and next to the contents of the environment in two-sided printing. In
one-sided printing, captions=rightbeside is used.

rightbeside, besideright
Captions for the captionbeside environment (see section 3.20, page 135) are placed
to the right of the contents of the floating environment.

signature, below, bot, bottom
Captions for floating environments use signature format. This setting does not con-
trol whether they are placed at the top or the bottom of the object. This options
also implies captions=tablesignature and captions=figuresignature.

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.17.: Available values for the captions option (continued)

tableheading, tableabove, abovetable, abovetabular, topattable
Captions for tables use heading format—possibly deviating from captions=
signature.

tablesignature, belowtable, belowtabular, bottomattable
Captions for tables use signature format-—possibly deviating from captions=
heading.

topbeside, besidetop
Captions for the captionbeside environment (see section 3.20, page 135) are verti-
cally aligned to the baseline at the top of the floating environment.

\caption[entryl{title}
\captionbelow[entry]{title}
\captionabove[entry]l{title}

In the standard classes, tables and figures are given captions with the \caption command
placed below the table or figure. For figures, this is generally correct. For tables, opinions
differ as to whether captions should be placed above the table or, consistent with captions of
figures, below it. Therefore KOMA-Script, unlike the standard classes, offers \captionbelow
for captions below and \captionabove for captions above tables or figures.

For tables and figures, or in general for all floating environments, you can control the
behaviour of \caption with the captions option described at the beginning of this section. For
compatibility reasons, the default behaviour of \caption for all floating environments is like
\captionbelow. However, you should use the captions=tableheading option, which switches
the behaviour of \caption inside table environments to \captionabove. Alternatively, you
can use \captionabove instead of \caption inside every table environment.

Example: Instead of using captions below a table, you want to place your captions above it,
because you have tables which span more then one page. In the standard classes
you could only write:

\begin{table}
\caption{This is an example table}
\begin{tabular}{1111}
This & is & an & example.\\\hline
This & is & an & example.\\
This & is & an & example.
\end{tabular}
\end{table}

Chapter 3: The Main Classes: scrbook, scrreprt, and scrartcl

Table 3.18.: Font defaults for the elements of figure or table cap-
tions

element default

caption \normalfont
captionlabel \normalfont

Then you would get this unsatisfying result:

Table 30.2: This is an example table.
This is an example.
This is an example.

This is an example.

Using KOMA-Script you write instead:

\begin{table}
\captionabove{This is just an example table}
\begin{tabular}{1111}
This & is & an & example.\\\hline
This & is & an & example.\\
This & is & an & example.
\end{tabular}
\end{table}

Then you get:

Table 30.2: This is just an example table

This is an example.

This is an example.

This is an example.

Since you want all your tables typeset with captions above, you could of course
use the captions=tableheading option instead (see page 128). Then you can use
\caption as you would in the standard classes. You will get the same result as
with \captionabove.

The font style for the description and the label—“Figure” or “Table”, followed by
the number and the delimiter —can be changed with the commands \setkomafont and
\addtokomafont (see section 3.6, page 58). The respective elements for this are caption
and captionlabel (see table 3.2, page 59). The font style for the element caption is applied
to the element captionlabel before the font style of captionlabel itself is