TEX BY TOPIC, A TEXNICIAN’S REFERENCE

VICTOR EIJKHOUT

Copyright (© 2007 Victor Eijkhout.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License”. This document is based on the book TgX by Topic, copyright 1991-2007 Victor

Eijkhout. This book was printed in 1991 by Addison-Wesley UK, ISBN 0-201-56882-9,
reprinted in 1993, pdf version first made freely available in 2001.

Victor Eijkhout — TgX by Topic 1

Contents

[License 14
1 The Structure of the TgX Processor| 21

1.1 Four 'IEX processors| 21
12 zEe méut Erocessof_'l 22

[T Characterinpul_22
mm 23

1.3.1 The process of expansion| 23

132 Special cases: \expandafter, \noexpand, and \the| 24

! 3 § Eraces n tEe exﬁansmn Erocessoﬂ 24
! E Zﬁe execution Erocessoﬂ 25

1.5 The visual processol] 26
[1.6 Examples| 26

1.6.1 Skipped spaces| 26

R~ Category Codes and Internal States] 28
2.1 Introduction| 28
2.2 Initial processing| 28
2.3 Category codes| 29
2.4 From characters fo fokend 31
2.5 The input processor as a finite state automaton| 31
251 State N: new [inel 31
[2.5.2 State S: skipping spaces| 32
2.5.3 State M: middle of line| 32
2.6 Accessing the full character set| 32
32
2.’/.1 0:escape character] 33
, : non-blank characters| 33
|2, 2,3 S: cnd Q_t Imcl 33
2.7.4 6:parameter] 33

33
34
2.7.7__10:spacg 34

278 T14:commentl 34

2 15: invalidl 34

2.8 Letters and other characters 34

Contents

2.9 The \par token| 35

36
36

36

.10. gnored and obeyed spaces| 37

38

(10,6 Control space] 38

RI0.7 7 39

.11 _ More about line ends 39

2.11.1 Obeylines| 39

[211.2 Changing the \endlinechar| 40

2.11.3 More remarks about the end-of-line characten 40
2.12 More about the input processor| 41

41
4l
P123 Recursive Invocation of the Input processon 42
213 The @ convention 42

B3 Characters 43

3.1 Character coded 43

3.2 Control sequences for characters 44

44
[B3.1 TImplicit character tokens: \let| 45

B4 Accents 46
3.5 ‘Testing charactersy 47
.0 Uppercase and lowercase] 48
.0. Uppercase and lowercase codes| 48

[3.6.2 Uppercase and lowercase commands| 48

3.6.3 Uppercase and lowercase forms of keywords| 49

.6.4 “reative use of \uppercase and \lowercase| 49
B7____Codes of a charactell 49
3.8 Converting tokens 1nto character strin 50
8. Output of control sequences| 50
[3:82 " Category codes of a \string] 50
B TFonfs 52
B1_ Fontd 52

4.2 Fontdeclarationl 53

42.1 Fonts and tfm files] 53

422 Querying the current font and font names| 53
54

H.LEQH.memmaU.QHI 54

¥4.3.1 Fontdimensions| 54

[37 Keming 55

B33 Ttalic correctionl 55

4.3.4 Ligatures| 56

{35 Boundary ligatures] 56

Victor Eijkhout — TgX by Topic 3

Contents

B Boxes 57

BI__ Boxed 58

5.2 Box registers] 58

5.2.1__ Allocation: \newbox] 58

5.2.2 Usage: \setbox, \box, \copy| 59

5.2.3 Testing: \ifvoid, \ifhbox, \ifvbox| 59
60

5.3 Natural dimensions of boxed 60

5.3.1 Dimensions of created horizontal boxes| 60
[5.3.2 Dimensions of created vertical boxes| 61

5.3.3 Examples| 62

5.4 More about box dimensiond 63

5.4.1 _ Predetermined dimensionsl 63

5.4.2 Changes to box dimensions| 63

545 Boxes and negative alue 65
5.5 Overfull and underfull boxesd 65

5.6 Opening and closing boxes| 66

§7 !Znﬁoxmg 67
5.8 Textin boxes 68

5.9 Assorted remarksd 69

[5.9.1 Forgetting the \box| 69

5.9.2 Special-purpose boxes| 69

5.9.4 More subtleties with vertical boxes| 69
5.9.5 Hanging the \1lastbox back in the listf 70

6.1 Honzontal and vertical mode| 72
[6.1.1 Horizontal model 72

[6.1.2 Vertical model 73

6.2 Horizontal and vertical commands 73
6.3 The internal modes 74

[6.3.1 Restricted horizontal mode| 74

[6.3.2 Internal vertical model 75

6.4 Boxes and modes 75

[6.4.1 What box do you use in what mode?| 75

[6.42 What mode holds in what box? 75
6.4.3 Mode-dependent behaviour of boxes| 75
6.5 Modes and glug 76

6.6 Migrating materia] 76

661 \vadjust] 76

6.7 Testing modes 77

[7 Numbers| 79

[7.1 Numbers and (number)s| 79

4 Victor Eijkhout — TgX by Topic

Contents

12 Taegery 79

2.1 Denotations: integers| &0

[72.2 Denotations: characters 80
[/.2.3 Internal integers| &1

2. Internal integers: other codes of a character] &2
[7.2.5 (special integer)| 82
[7.2.6 Other internal quantities: coersion to integer] 82
[7.2.7 Trailing spaces| &2

83
[7.4 Integer registers| 83
75— Arithmetid 84
[£5.1 Anthmetic statements| 84
.5.2 Floating-point arithmetic| &4

/5.3 Fixed-point arithmetic| 85

7.6 Number testing] 85

77 __Remarkd 85

[7.7.1 __ Character constants|] 85

[7.7.2 Expanding too far / how far] 86
8 Dimensions and Glue] 87

8.1 Definition of (glue) and (dimen)| 88
811 Definition of dimensions] 88

[8.1.2 Definition of glue| 89

[8.1.3 Conversion of (glue) to (dimen)| 90
8.1.4 Registers for \dimen and \skip| 90
91

8.1.6 Arithmetic: multiplication and division| 91
8.2 More about dimensions 92

[8.2.1 Units of measurement 92

8.2.2 D1men51on testing] 92

92

8.3 More about Iu 93
[B3.1__Stretch and shrinkl 93

8.3.2 Glue setting] 94

95

8.3.4 Glue and breaking| 95

8.3.5 \kern| 95

[8.3.6 Glue and modesl 96

[8.3.7 The last glue item 1n a list: backspacing] 96
18.3.8 Examples of backspacing] 96

| 3.9 Glue in trace output| 97

ex—‘mr: 08

9.1.1 Rule dimensions| 99
0.2 ILeaders 99

9.2.1 Rule leaders| 100
9.2.2 Boxleaders] 101

Victor Eijkhout — TgX by Topic 5

Contents

[9.2.3 Evenly spaced leaders| 102

0.3 Assorted remarks 102

[9.3.1 Rules and modes| 102

| 3.2 Endinga Earagraph with 1eaders| 102
103
mmm 103

[9.3.5 Box leaders in trace output| 103
9.3.6 Leaders and shifted margins| 103
10 Grouping 105

10.1 The grouping mechanism| 105
103 Tocal and global assignment 106
T03 Group delimiters 106

10.4 _ More about braces 107

10.4.1 Brace counters| 107

10.4.2 The brace as a token| 108

10.4.3 Open and closing brace control symbols| 108
11T Macros 109

1.1 Introduction| 109

11.2 Layout of a macro definition] 110
[1.3 Prefixes 110

114 The definition type| 111
. e parameter text| 111
[(11.5.1 Undelimited parameters| 112

11.5.2 Delimited parameters| 112

TT.5.3 Examples with delimited arguments| 113
1154 Emply argumenty 114
11.5.6 Brace delimiting] 115

11.6 Construction of control sequences| 116
1.7 Token assignments by \let and \futurelet| 116
1171 \let] 117

[11.7.2 \futurelet| 117

(1.8 Assorted remarks 117

(11.8.1 Active characters|] 117

11.8.2 Macros versus primitives| 118

11.83 Tailrecursion] 118

11.9 Macro techniques| 119

11.9.1 Unknown number of arguments| 119
11.9.2 Examining the argument| 120

! lg% !wo-steﬁ macr0s| 122
11.9.5 A comment environmen 122
(12 Expansion| 125

2.1 Introduction 125

12.2 Ordinary expansion| 125
2.3 Reversing expansion order] 126

6 Victor Eijkhout — TgX by Topic

Contents

[12.3.1 _One step expansion: \expandafter| 126
127

128

128

129

129

4. noexpand and active characters| 130

2.5 \relax 130
[12.5.1 \relax and \csname| 131
[12.5.2 Preventing expansion with \relax| 132
(253 TpXinserts a\relax] 132
[T2.5.4 The value of non-macros; \the| 132
[12.6 Examples| 133
6 panding 133
134
12.6.3 Expansion and \write| 134
[12.6.4 Controlled expansion inside an \edef| 135
[12.6.5 Multiple prevention of expansion| 136
.6.6 More examples with \relax| 136
[26.7 Example: category code saving and restoring] 137
|12.6.8 Combining \aftergroup ang boxes| 138
139
140
[13.1 The shape of conditionals| 140
[13:2" Character and control sequence tests] 141
[[321 \ifl 141
141
142
133 Mode testd 142
134 Numerical tests 143
3.5 Othertests 143
[I3.5.1 Dimension testing| 143
352 Boxfests] 143
143
13.5.4 Case statement] 143
[13.5.5 Special tests| 144
[13.6 _ The \newif macro 144
13.7 __ Evaluation of conditionals 145
[13.8 Assorted remarksl 146

[13.8.1 The test gobbles up tokens| 146

e test wants to gobble up the \else or \fi| 146
[13.8.3 Macros and conditionals; the use of \expandafter] 147
[I3:8:4 Tncorrect matching] 148
M3.85 Conditionals and grouping 149
149
[13.8.7 More examples of expansion in conditionals| 149

Victor Eijkhout — TgX by Topic 7

Contents

4 Token Lists] 152
4.1 Token lists 152

14.2 Use of token lists] 152
143 (token parameter)| 153

14.4 Token list registers) 153
143 Examples| 154

[14.5.1 Operations on token lists: stack macros| 154

14.5.2 Executing token lists] 155

15 Baseline Distances| 157

15.1 Interline glue| 157

152 The perceived depth of boxes| 159
153~ Terminology] 159

154 Addiional remarks 160

[16 Paragraph Start] 161

16.1 When does a paragraph start) 161

16,0 What happens when a paragraph sty 162
163 Assorfed remarksd 162

16.3.1 Starting a paragraph with a box| 162
16.3.2 Starting a paragraph with a group| 162

164 Examples] 163
tretchable indentation| 163

[16.4.2 Suppressing indentation| 163
(16.4.3 Anindentation scheme| 163
16.4.4 A paragraph skip scheme| 164
17 Paragraph End| 166

17.1 The way paragraphs end 166

17.1.1 The \par command and the \par token| 167

17.!.2 Paragraﬁﬁ ﬁ!!mé: Sﬁarfillskiﬁ] 167
17.2 Assorted remarks 167

17.2.1 Ending a paragraph and a group at the same time| 167
2. nding a paragraph with \hfill\bre 168

1723 Ending a paragraph witharule 168

17.2.5 Finite \parfillskip 168

18~ Paragraph Shape] 170

(8.1 The width of text lines 170

[18.2 Shape parameters| 170

18.2.1 Hanging indentation| 170

1822 General paragraph shapes: \parshape| 172

183 Assorted remarkd 172

(18.3.1 Centred last lines| 172

18.3.2 Indenting into the margin| 173

18.3.3 Hang a paragraph from an object] 173

18.3.4 Another approach to hanging indentation| 174
183.5 Hanging indentation versus \leftskip shifting] 174

8 Victor Eijkhout — TgX by Topic

Contents

[18.3.6 More examples| 174
9 B g| 175

01 Paragraph break cost calculation] 176
M9.I.1 Badness 176

19.1.2 Penalties and other break locations 177
[9.1.3 Demerits] 177

[19.1.4 The number of lines of a paragraph| 178
119.1.5 Between the lines| 178

[19.2 The process of breaking| 179

[[921 Three passes| 179
[[9.2.2Tolerance values 179

19.3 Discretionaries] 180

[19.3.1 Hyphens and discretionaries| 180
9.3. xamples of discretionaries| 181
0.4 Hyp 181

[[9.417 Startof a wordl 181

119.4.2 Endofaword 182

[19.4.3 "TpX2 versus IEX3| 182
9.4.4 Patterns and exceptions| 182

183

i85

[20.1 Introduction| 185

[20.2 Automatic interword spacel 185

[20.3 User interword space| 186

187

D0 More on the space faciol] 188
188
188

20.5.3 Other non-letters| 189

[20.5.4 Other influences on the space factor| 189
21 Characters in Math Mode| 190
1.1 Mathematical characters 191
212 Delimiterd 191

21.2.1 Delimiter codes| 192

[21.2.2 Explicit \delimiter commands| 192
|Z [23 Fmam&a delimiter; successors| 192

[21.2.4 \big, \Big, \bigg, and \Bigg delimiter macros| 193
RI3—Radicald 193
214 Math accentd 194
22 Fonts in Formulas| 196
[22.1 Determining the font of a character in math mode| 196
(2.7 Tnitial Family settings,_ 197

. amily definition| 197

. ome specific font changes] 198

[22.4.1 Change the font of ordinary characters and uppercase Greek] 198
[22.4.2 Change uppercase Greek independent of text fonf] 198

Victor Eijkhout — TgX by Topic 9

Contents

[22.4.3 Change the font of lowercase Greek| 198
22.5 Assorted remarks 199

[22.5.1 _New fonts in formulas| 199

[22.5.2 Evaluating the families] 199

B3 Mathematics Typesetting 200
3.1 Math moded 201

[23.2 Styles in math mode] 201

[23.2.1 Superscripts and subscripts| 202
202
203
204
. Vertical centring: \vcenter| 204
[23.6 Mathematical spacing: mu glue| 205
.0. “lassification of mu glue| 205
6 M D reg 206
206
206
[23.8 Underlining, overlining) 207
207
23.10 __Font dimensions of families 2 and 31 208
[23.10.1 Symbol font attributes| 208
[23.10.2 Extension font atfributesl 209

[23.10.3 Example: subscript Iowering| 209

4 Disp Vi 210
v Disp J 210
4. Displays in paragraphs| 211
4. Vertical material around displays 211
D44 Glue setting of the display math lis] 212
[24.5 Centring the display formula: displacement) 212
213
213
4.6. e equation number on a separate line| 213
4. Non-centred displa 214

g 215

25.1 Introduction 215
[25.2 Horizontal and vertical alignment) 215

|25.2.1 Horizontal alignments: \halign| 216
|25.2.2 Vertical alignments: \valign| 216

2.3 Material between the lines: \noalign| 216
4 Size of the alignment| 217
D bleg 217
. nfinite preambles| 217
. Brace counting 1in preambles| 218
. xpansion 1n the preamble| 218
3.4 tabskip| 218
. e alignment| 219

E

—

0

Victor Eijkhout — TgX by Topic

Contents

[25.4.1 Reading an entry| 219

4. Alternate specifications: \omit| 220
4. spanning across multiple columns: \spa 220
mm 221
2545 Endof aline: \cr and \crcx] 222
[25.5 Example: math alignments| 222
06 PageShape 224
[26.1 The reference point for global positioning] 224
|26.2 \toEskiEI 224
225
n—mﬁm 226
27.1 The current page and the recent contributions 227
[27.2 Activating the page builder] 227
Page length bookkeeping| 227
Breakp g 228
D741 Possible breakpoms 228
P742 Breakpomnt penalties] 228
[27.4.3 Breakpoint computation| 229
230

.6 xamples of page breaking) 231
g up a page| 231

7. 6 2 Determining tEe breakpoini] 231

[27.6.3 The page builder after a paragraph| 233
3 Dutput R 234
8. e \output token lisff 234

28.2 Output and \box255| 235

236

28.4 Assorted remarksl 237

[28.4.1 Hazards 1n non-trivial output routines| 237
8.4 Pag b gl 237

|Z§§§ Eea§!1nes an§ foothnes in plain TpX| 237
|Z§§§ Examﬁ!e' no w@ow !1nes‘ 238
[28.4.3 Example: no indentation top of page] 238

[28.4.6 More examgles of output routines| 239

240

IZQJ_Ins.cmgm.lLde 240

29.2 _ Insertion class declaration 241

[29.3 Insertion parameters| 241

[29.4 Moving insertion items from the contributions lisff 242

[29.5 Insertions 1n the output routing 243
[9.6Plai TEX insertiony_243

[0 File Tnput and Outpuf] 245

0.1 Including files: \input and \endinput| 245
246

[30.2.1 Opening and closing streams| 246
[30.2.2 Tnput with \read] 246

A

Victor Eijkhout — TgX by Topic 11

Contents

[30.2.3 Output with \write| 247
247

304 Assorted remarks 248
[30.4.1 Inspecting inputj 248

0.4. esting for existence of files| 248
30.4.3 Timing problems| 248

249
30.4.5_ Write inside a vertical box] 249

[30.4.6 Expansion and spaces in \write and \message| 249

B1T____Allocafionl 251

B1.1 __ Allocation commands 251

[BL.1.I \count, \dimen, \skip, \muskip, \toks| 252
BI.1.2" \box, \fam, \write, \read, \insert| 252
31.2 Ground rules for macro writers 252

[32 Running TgX| 254

254

[32.1.1 Start of the job| 254

[32.1.2 End of the job] 255

BZI3 Thologflg 255

255

[33 '1gX and the Outside World| 257
257
B3.1.1 Formats: loading 257

[33.1.2 Formats: dumping| 258

258

258

v

.1.5 Memory sizes of TgX and IniTgX|] 259

332 More about formats 259

[33.2.1 Compatibility] 259
33.22 Preloaded fontsl 260
[33.2.3 The plain format| 260
260
33.2.5 Mathematical formats| 260
[33.2.6 Other formats| 261
33.3 Thedvi file 261
(33.3.1 Thedvi file formatl 261
[33.3.2 Page identification| 262
B333 Magnification] 262
262

B35 ___Timd 263

(33,6 Fontd 263
[33.6.1 Font metrics| 263
[33.6.2 Virtual fontsl 263
[33.6.3 Font files| 264

[33.6.4 Computer Modern| 264
B377 TgX and web 265

12

Victor Eijkhout — TgX by Topic

Contents

133.8 The TeX Users Group| 265

267

[34.1 Meaning and content: \show, \showthe, \meaning| 268
342 Show boxes: \showbox, \tracingoutput| 268
343 Global statistics 270

135 Errors, Catastrophes, and Help| 272
35.1 Error messages| 272

352 Overflow errors| 273

[35.2.1 Bulffer size (500)| 273

[35.2.2 Exception dictionary (307)] 273
135.2.3 Font memory (20 000)| 274

35.2.4 Grouping levels| 274

135.2.5 Hash size (2100)| 274

[35.2.6 Number of strings (3000)| 274

[35.2.7 Input stack size (200)| 274

[35.2.8 Main memory size (30000)| 274
35.2.9 Parameter stack size (60)] 275
[35.2.10 Pattern memory (8000)| 275

[35.2.11 Pattern memory ops per language| 275
[35:2:12 Pool size (32000) 275

135.2.13 Save size (600) 275

135.2.14 Semantic nest size (40)] 276

[35.2.15 Text input levels (6)] 276

136 The Grammar of TgX| 277

36.1 Notations| 277

136.2 Keywords| 278

136.3 Specific grammatical terms| 278
36.3.1 (equals)| 278

36.3.2 (filler), (general text)| 278

[36.3.3 " {3 and (left brace) (right brace)| 279
[36.3.4 (math field)| 279

[36.4 Ditferences between TEX versions 2 and 3| 279
37 Glossary of TEX Primitives| 281
B8 Tables 295

38.1 __ Character tables 296

138.2 Computer modern fonts| 298

138.3 Plain IgX math symbols| 303
(38.3.1 Mathcharacter codes| 303

38.3.2 Delimiter codesl 304

[38.3.3 (mathchardef tokens): ordinary symbols| 305
[38.3.4 (mathchardef tokens): large operators| 306
[38.3.5 (mathchardef tokens): binary operations| 307
[38.3.6 (mathchardef tokens): relations| 308

138.3.7 \delimiter macros| 309

Victor Eijkhout — TgX by Topic 13

Contents

License GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim co-
pies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public Li-
cense, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provi-
ding the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not

14 Victor Eijkhout — TgX by Topic

Contents

allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suita-
ble for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent mo-
dification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as ”Ack-
nowledgements”, ”Dedications”, “Endorsements”, or "History”.) To "Preserve the Title”
of such a section when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be in-
cluded by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice say-

Victor Eijkhout — TgX by Topic 15

Contents

ing this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission. B. List on the Title Page, as authors, one or more

16 Victor Eijkhout — TgX by Topic

Contents

persons or entities responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement. C. State
on the Title page the name of the publisher of the Modified Version, as the publisher. D.
Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice
for your modifications adjacent to the other copyright notices. F. Include, immediately after
the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below. G.
Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice. H. Include an unaltered copy of this License. 1.
Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence. J. Preserve the network
location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if
the original publisher of the version it refers to gives permission. K. For any section Entitled
” Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein. L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equivalent are not considered part of
the section titles. M. Delete any section Entitled "Endorsements”. Such a section may not
be included in the Modified Version. N. Do not retitle any existing section to be Entitled
“Endorsements” or to conflict in title with any Invariant Section. O. Preserve any Warranty
Disclaimers. If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their titles
to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to

Victor Eijkhout — TgX by Topic 17

Contents

use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History” in the various ori-
ginal documents, forming one section Entitled “History”; likewise combine any sections
Entitled ”Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled "Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent do-
cuments or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the Do-
cument is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations

18 Victor Eijkhout — TgX by Topic

Contents

of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original Eng-
lish version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ” Acknowledgements”, "Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Do-
cumentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Victor Eijkhout — TgX by Topic 19

Contents

Preface To the casual observer, TgX is not a state-of-the-art typesetting system. No flashy
multilevel menus and interactive manipulation of text and graphics dazzle the onlooker. On
a less superficial level, however, TEX is a very sophisticated program, first of all because
of the ingeniousness of its built-in algorithms for such things as paragraph breaking and
make-up of mathematical formulas, and second because of its almost complete program-
mability. The combination of these factors makes it possible for TEX to realize almost every
imaginable layout in a highly automated fashion.

Unfortunately, it also means that TgX has an unusually large number of commands and
parameters, and that programming TgX can be far from easy. Anyone wanting to program
in TgX, and maybe even the ordinary user, would seem to need two books: a tutorial that
gives a first glimpse of the many nuts and bolts of TgX, and after that a systematic, complete
reference manual. This book tries to fulfil the latter function. A TgXer who has already
made a start (using any of a number of introductory books on the market) should be able to
use this book indefinitely thereafter.

In this volume the universe of TgX is presented as about forty different subjects, each in
a separate chapter. Each chapter starts out with a list of control sequences relevant to the
topic of that chapter and proceeds to treat the theory of the topic. Most chapters conclude
with remarks and examples.

Globally, the chapters are ordered as follows. The chapters on basic mechanisms are first,
the chapters on text treatment and mathematics are next, and finally there are some chapters
on output and aspects of TEX’s connections to the outside world. The book also contains
a glossary of TEX commands, tables, and indexes by example, by control sequence, and
by subject. The subject index refers for most concepts to only one page, where most of
the information on that topic can be found, as well as references to the locations of related
information.

This book does not treat any specific TEX macro package. Any parts of the plain format
that are treated are those parts that belong to the ‘core’ of plain TgX: they are also present
in, for instance, I&TEX. Therefore, most remarks about the plain format are true for IZTEX,
as well as most other formats. Putting it differently, if the text refers to the plain format,
this should be taken as a contrast to pure IniTgX, not to KIEX. By way of illustration,
occasionally macros from plain TgX are explained that do not belong to the core.

Acknowledgment

I am indebted to Barbara Beeton, Karl Berry, and Nico Poppelier, who read previous versi-
ons of this book. Their comments helped to improve the presentation. Also I would like to
thank the participants of the discussion lists TgXhax, TgX-nl, and comp.text.tex. Their
questions and answers gave me much food for thought. Finally, any acknowledgement in
a book about TgX ought to include Donald Knuth for inventing TgX in the first place. This
book is no exception.

Victor Eijkhout
Urbana, Illinois, August 1991
Knoxville, Tennessee, May 2001

20 Victor Eijkhout — TgX by Topic

Chapter 1

The Structure of the TgX Processor

This book treats the various aspects of TgX in chapters that are concerned with relatively
small, well-delineated, topics. In this chapter, therefore, a global picture of the way TX
operates will be given. Of necessity, many details will be omitted here, but all of these are
treated in later chapters. On the other hand, the few examples given in this chapter will
be repeated in the appropriate places later on; they are included here to make this chapter
self-contained.

1.1 Four TEX processors

The way TEX processes its input can be viewed as happening on four levels. One might say
that the TgX processor is split into four separate units, each one accepting the output of the
previous stage, and delivering the input for the next stage. The input of the first stage is
then the . tex input file; the output of the last stage is a .dvi file.

For many purposes it is most convenient, and most insightful, to consider these four levels
of processing as happening after one another, each one accepting the completed output of
the previous level. In reality this is not true: all levels are simultaneously active, and there
is interaction between them.

The four levels are (corresponding roughly to the ‘eyes’, ‘mouth’, ‘stomach’, and ‘bowels’
respectively in Knuth’s original terminology) as follows.

1. The input processor. This is the piece of TEX that accepts input lines from the file
system of whatever computer TgX runs on, and turns them into tokens. Tokens are
the internal objects of TgX: there are character tokens that constitute the typeset
text, and control sequence tokens that are commands to be processed by the next
two levels.

2. The expansion processor. Some but not all of the tokens generated in the first level
— macros, conditionals, and a number of primitive TgX commands — are subject to
expansion. Expansion is the process that replaces some (sequences of) tokens by
other (or no) tokens.

3. The execution processor. Control sequences that are not expandable are executa-
ble, and this execution takes place on the third level of the TgX processor.

21

Chapter 1. The Structure of the TgX Processor

One part of the activity here concerns changes to TgX’s internal state: assignments
(including macro definitions) are typical activities in this category. The other ma-
jor thing happening on this level is the construction of horizontal, vertical, and
mathematical lists.

4. The visual processor. In the final level of processing the visual part of TgX proces-
sing is performed. Here horizontal lists are broken into paragraphs, vertical lists
are broken into pages, and formulas are built out of math lists. Also the output to
the dvi file takes place on this level. The algorithms working here are not acces-
sible to the user, but they can be influenced by a number of parameters.

1.2 The input processor

The input processor of TgX is that part of TgX that translates whatever characters it gets
from the input file into tokens. The output of this processor is a stream of tokens: a token
list. Most tokens fall into one of two categories: character tokens and control sequence
tokens. The remaining category is that of the parameter tokens; these will not be treated in
this chapter.

1.2.1 Character input

For simple input text, characters are made into character tokens. However, TgX can ignore
input characters: a row of spaces in the input is usually equivalent to just one space. Also,
TEX itself can insert tokens that do not correspond to any character in the input, for instance
the space token at the end of the line, or the \par token after an empty line.

Not all character tokens signify characters to be typeset. Characters fall into sixteen catego-
ries — each one specifying a certain function that a character can have — of which only two
contain the characters that will be typeset. The other categories contain such characters
as {, }, & and #. A character token can be considered as a pair of numbers: the charac-
ter code — typically the ASCII code — and the category code. It is possible to change the
category code that is associated with a particular character code.

When the escape character (by default \) appears in the input, TgX’s behaviour in forming
tokens is more complicated. Basically, TgX builds a control sequence by taking a number
of characters from the input and lumping them together into a single token.

The behaviour with which TEX’s input processor reacts to category codes can be described
as a machine that switches between three internal states: IV, new line; M, middle of line;
S, skipping spaces. These states and the transitions between them are treated in Chapter 2]

1.2.2 Two-level input processing

TEX’s input processor is in fact itself a two-level processor. Because of limitations of the
terminal, the editor, or the operating system, the user may not be able to input certain
desired characters. Therefore, TEX provides a mechanism to access with two superscript
characters all of the available character positions. This may be considered a separate stage
of TgX processing, taking place prior to the three-state machine mentioned above.

22 Victor Eijkhout — TgX by Topic

1.3. The expansion processor

For instance, the sequence ~~+ is replaced by k because the ASCII codes of k and + differ
by 64. Since this replacement takes place before tokens are formed, writing \vs~~+ip 5cm
has the same effect as \vskip 5cm. Examples more useful than this exist.

Note that this first stage is a transformation from characters to characters, without consi-
dering category codes. These come into play only in the second phase of input processing
where characters are converted to character tokens by coupling the category code to the
character code.

1.3 The expansion processor

TgX’s expansion processor accepts a stream of tokens and, if possible, expands the tokens
in this stream one by one until only unexpandable tokens remain. Macro expansion is the
clearest example of this: if a control sequence is a macro name, it is replaced (together
possibly with parameter tokens) by the definition text of the macro.

Input for the expansion processor is provided mainly by the input processor. The stream of
tokens coming from the first stage of TgX processing is subject to the expansion process,
and the result is a stream of unexpandable tokens which is fed to the execution processor.

However, the expansion processor comes into play also when (among others) an \edef or
\write is processed. The parameter token list of these commands is expanded very much
as if the lists had been on the top level, instead of the argument to a command.

1.3.1 The process of expansion

Expanding a token consists of the following steps:

1. See whether the token is expandable.

2. If the token is unexpandable, pass it to the token list currently being built, and take
on the next token.

3. If the token is expandable, replace it by its expansion. For macros without para-

meters, and a few primitive commands such as \ jobname, this is indeed a simple
replacement. Usually, however, TgX needs to absorb some argument tokens from
the stream in order to be able to form the replacement of the current token. For
instance, if the token was a macro with parameters, sufficiently many tokens need
to be absorbed to form the arguments corresponding to these parameters.

4. Go on expanding, starting with the first token of the expansion.

Deciding whether a token is expandable is a simple decision. Macros and active characters,
conditionals, and a number of primitive TgX commands (see the list on page [123) are
expandable, other tokens are not. Thus the expansion processor replaces macros by their
expansion, it evaluates conditionals and eliminates any irrelevant parts of these, but tokens
such as \vskip and character tokens, including characters such as dollars and braces, are
passed untouched.

Victor Eijkhout — TgX by Topic 23

Chapter 1. The Structure of the TgX Processor

1.3.2 Special cases: \expandafter, \noexpand, and \the

As stated above, after a token has been expanded, TgX will start expanding the resulting
tokens. At first sight the \expandafter command would seem to be an exception to this
rule, because it expands only one step. What actually happens is that the sequence

\expandafter(token;)(tokensy)
is replaced by
(token;) (expansion of tokens)
and this replacement is in fact reexamined by the expansion processor.
Real exceptions do exist, however. If the current token is the \noexpand command, the
next token is considered for the moment to be unexpandable: it is handled as if it were
\relax, and it is passed to the token list being built.
For example, in the macro definition
\edef\a{\noexpand\b}

the replacement text \noexpand\b is expanded at definition time. The expansion of \noexpand
is the next token, with a temporary meaning of \relax. Thus, when the expansion proces-

sor tackles the next token, the \b, it will consider that to be unexpandable, and just pass it

to the token list being built, which is the replacement text of the macro.

Another exception is that the tokens resulting from \the(token variable) are not expanded
further if this statement occurs inside an \edef macro definition.

1.3.3 Braces in the expansion processor

Above, it was said that braces are passed as unexpandable character tokens. In general this
is true. For instance, the \romannumeral command is handled by the expansion processor;
when confronted with

\romannumerall\number\count2 3{4 ...
TEX will expand until the brace is encountered: if \count?2 has the value of zero, the result
will be the roman numeral representation of 103.
As another example,
\iftrue {\else }\fi
is handled by the expansion processor completely analogous to
\iftrue a\else b\fi
The result is a character token, independent of its category.
However, in the context of macro expansion the expansion processor will recognize braces.

First of all, a balanced pair of braces marks off a group of tokens to be passed as one
argument. If a macro has an argument

\def\macro#1{ ... }
one can call it with a single token, as in

\macro 1 \macro \$

24 Victor Eijkhout — TgX by Topic

1.4. The execution processor

or with a group of tokens, surrounded by braces

\macro {abc} \macro {d{efl}g}

Secondly, when the arguments for a macro with parameters are read, no expressions with
unbalanced braces are accepted. In

\def\a#1\stop{ ... }

the argument consists of all tokens up to the first occurrence of \stop that is not in braces:
in

\a bc{d\stoplte\stop

the argument of \a is bc{d\stopl}e. Only balanced expressions are accepted here.

1.4 The execution processor

The execution processor builds lists: horizontal, vertical, and math lists. Corresponding to
these lists, it works in horizontal, vertical, or math mode. Of these three modes ‘internal’
and ‘external’ variants exist. In addition to building lists, this part of the TgX processor also
performs mode-independent processing, such as assignments.

Coming out of the expansion processor is a stream of unexpandable tokens to be processed
by the execution processor. From the point of view of the execution processor, this stream
contains two types of tokens:

° Tokens signalling an assignment (this includes macro definitions), and other to-
kens signalling actions that are independent of the mode, such as \show and
\aftergroup.

° Tokens that build lists: characters, boxes, and glue. The way they are handled

depends on the current mode.

Some objects can be used in any mode; for instance boxes can appear in horizontal, ver-
tical, and math lists. The effect of such an object will of course still depend on the mode.
Other objects are specific for one mode. For instance, characters (to be more precise: cha-
racter tokens of categories 11 and 12), are intimately connected to horizontal mode: if the
execution processor is in vertical mode when it encounters a character, it will switch to
horizontal mode.

Not all character tokens signal characters to be typeset: the execution processor can also
encounter math shift characters (by default $) and beginning/end of group characters (by
default { and }). Math shift characters let TgX enter or exit math mode, and braces let it
enter or exit a new level of grouping.

One control sequence handled by the execution processor deserves special mention: \relax.
This control sequence is not expandable, but the execution is to do nothing. Compare the
effect of \relax in

\countO=1\relax 2
with that of \empty defined by
\def\empty{}

Victor Eijkhout — TgX by Topic 25

Chapter 1. The Structure of the TgX Processor

in
\count0=1\empty 2

In the first case the expansion process that is forming the number stops at \relax and the
number 1 is assigned; in the second case \empty expands to nothing, so 12 is assigned.

1.5 The visual processor

TEX’s output processor encompasses those algorithms that are outside direct user control:
paragraph breaking, alignment, page breaking, math typesetting, and dvi file generation.
Various parameters control the operation of these parts of TEX.

Some of these algorithms return their results in a form that can be handled by the execution
processor. For instance, a paragraph that has been broken into lines is added to the main
vertical list as a sequence of horizontal boxes with intermediate glue and penalties. Also,
the page breaking algorithm stores its result in \box255, so output routines can dissect it.
On the other hand, a math formula can not be broken into pieces, and, naturally, shipping a
box to the dvi file is irreversible.

1.6 Examples
1.6.1 Skipped spaces
Skipped spaces provide an illustration of the view that TgX’s levels of processing accept

the completed input of the previous level. Consider the commands

\def\a{\penalty2003}
\a 0

This is not equivalent to

\penalty200 O

which would place a penalty of 200, and typeset the digit 0. Instead it expands to
\penalty2000

because the space after \a is skipped in the input processor. Later stages of processing then
receive the sequence

\a0

1.6.2 Internal quantities and their representations

TEX uses various sorts of internal quantities, such as integers and dimensions. These inter-
nal quantities have an external representation, which is a string of characters, such as 4711
or 91.44cm.

Conversions between the internal value and the external representation take place on two
different levels, depending on what direction the conversion goes. A string of characters is
converted to an internal value in assignments such as

26 Victor Eijkhout — TgX by Topic

1.6. Examples

\pageno=12 \baselineskip=13pt

or statements such as

\vskip 5.71pt

and all of these statements are handled by the execution processor.

On the other hand, the conversion of the internal values into a representation as a string of
characters is handled by the expansion processor. For instance,

\number\pageno \romannumeral\year
\the\baselineskip

are all processed by expansion.

As a final example, suppose \count2=45, and consider the statement
\countO=1\number\count2 3

The expansion processor tackles \number\count?2 to give the characters 45, and the space
after the 2 does not end the number being assigned: it only serves as a delimiter of the
number of the \count register. In the next stage of processing, the execution processor
will then see the statement

\count0=1453
and execute this.

Victor Eijkhout — TgX by Topic 27

Chapter 2

Category Codes and Internal States

When characters are read, TgX assigns them category codes. The reading mechanism has
three internal states, and transitions between these states are effected by category codes of
characters in the input. This chapter describes how TEX reads its input and how the category
codes of characters influence the reading behaviour. Spaces and line ends are discussed.

\endlinechar The character code of the end-of-line character appended to input lines.
IniTEX default: 13.

\par Command to close off a paragraph and go into vertical mode. Is generated by empty
lines.

\ignorespaces Command that reads and expands until something is encountered that is
not a (space token).

\catcode Query or set category codes.

\ifcat Test whether two characters have the same category code.

\u Control space. Insert the same amount of space that a space token would when \spacefactor =
1000.

\obeylines Macro in plain TgX to make line ends significant.

\obeyspaces Macro in plain TgX to make (most) spaces significant.

2.1 Introduction

TEX’s input processor scans input lines from a file or terminal, and makes tokens out of the
characters. The input processor can be viewed as a simple finite state automaton with three
internal states; depending on the state its scanning behaviour may differ. This automaton
will be treated here both from the point of view of the internal states and of the category
codes governing the transitions.

2.2 Initial processing

Input from a file (or from the user terminal, but this will not be mentioned specifically most
of the time) is handled one line at a time. Here follows a discussion of what exactly is an
input line for TeX.

28

2.3. Category codes

Computer systems differ with respect to the exact definition of an input line. The carriage
return/line feed sequence terminating a line is most common, but some systems use just
a line feed, and some systems with fixed record length (block) storage do not have a line
terminator at all. Therefore TX has its own way of terminating an input line.

1. An input line is read from an input file (minus the line terminator, if any).

2. Trailing spaces are removed (this is for the systems with block storage, and it
prevents confusion because these spaces are hard to see in an editor).

3. The , by default (return) (code 13) is appended. If the value of \endlinechar is

negative or more than 255 (this was 127 in versions of TgX older than version 3;
see page for more differences), no character is appended. The effect then is
the same as if the line were to end with a comment character.

Computers may also differ in the character encoding (the most common schemes are ASCII
and EBCDIC), so TEX converts the characters that are read from the file to its own character
codes. These codes are then used exclusively, so that TgX will perform the same on any
system. For more on this, see Chapter 3]

2.3 Category codes

Each of the 256 character codes (0-255) has an associated category code, though not neces-
sarily always the same one. There are 16 categories, numbered 0—15. When scanning the
input, TgX thus forms character-code—category-code pairs. The input processor sees only
these pairs; from them are formed character tokens, control sequence tokens, and parameter
tokens. These tokens are then passed to TEX’s expansion and execution processes.

A character token is a character-code—category-code pair that is passed unchanged. A con-
trol sequence token consists of one or more characters preceded by an escape character;
see below. Parameter tokens are also explained below.

This is the list of the categories, together with a brief description. More elaborate explana-
tions follow in this and later chapters.

0. Escape character; this signals the start of a control sequence. IniTEX makes the
backslash \ (code 92) an escape character.

1. Beginning of group; such a character causes TgX to enter a new level of grouping.
The plain format makes the open brace { a beginningof-group character.

2. End of group; TgX closes the current level of grouping. Plain TgX has the closing
brace } as end-of-group character.

3. Math shift; this is the opening and closing delimiter for math formulas. Plain TgX
uses the dollar sign $ for this.

4. Alignment tab; the column (row) separator in tables made with \halign (\valign).
In plain TgX this is the ampersand &.

5. End of line; a character that TgX considers to signal the end of an input line. IniTEX

assigns this code to the (return), that is, code 13. Not coincidentally, 13 is also the
value that IniTgX assigns to the \endlinechar parameter; see above.

6. Parameter character; this indicates parameters for macros. In plain TgX this is the
hash sign #.

Victor Eijkhout — TgX by Topic 29

Chapter 2. Category Codes and Internal States

10.

11.

12.

13.

14.

15.

Superscript; this precedes superscript expressions in math mode. It is also used to
denote character codes that cannot be entered in an input file; see below. In plain
TEX this is the circumflex ~.

Subscript; this precedes subscript expressions in math mode. In plain TgX the
underscore _ is used for this.

Ignored; characters of this category are removed from the input, and have therefore
no influence on further TEX processing. In plain TEX this is the (null) character,
that is, code 0.

Space; space characters receive special treatment. IniTgX assigns this category to
the ASCII (space) character, code 32.

Letter; in IniTEX only the characters a. .z, A. . Z are in this category. Often, macro
packages make some ‘secret’ character (for instance @) into a letter.

Other; IniTEX puts everything that is not in the other categories into this category.
Thus it includes, for instance, digits and punctuation.

Active; active characters function as a TgX command, without being preceded by
an escape character. In plain TgX this is only the tie character ~, which is defined
to produce an unbreakable space; see page [I87]

Comment character; from a comment character onwards, TEX considers the rest of
an input line to be comment and ignores it. In IniTgX the per cent sign % is made
a comment character.

Invalid character; this category is for characters that should not appear in the input.
IniTiEX assigns the ASCII (delete) character, code 127, to this category.

The user can change the mapping of character codes to category codes with the command
(see Chapter for the explanation of concepts such as (equals)):

\catcode(number) (equals) (number).

In such a statement, the first number is often given in the form

“(character) or ¢\(character)

both of which denote the character code of the character (see pages[43|and [80).

The plain format defines \active
\chardef\active=13

so that one can write statements such as
\catcode‘\{=\active

The \chardef command is treated on pages [43]and

The ETEX format has the control sequences

\def\makeatletter{\catcode‘@=11 }
\def\makeatother{\catcode‘@=12 }

in order to switch on and off the ‘secret’ character @ (see below).

The \catcode command can also be used to query category codes: in
\count255=\catcode ‘\{
it yields a number, which can be assigned.

Category codes can be tested by

30

Victor Eijkhout — TgX by Topic

2.4. From characters to tokens

\ifcat(token;)(tokens)

TEX expands whatever is after \ifcat until two unexpandable tokens are found; these are
then compared with respect to their category codes. Control sequence tokens are considered
to have category code 16, which makes them all equal to each other, and unequal to all
character tokens. Conditionals are treated further in Chapter [I3]

2.4 From characters to tokens

The input processor of TEX scans input lines from a file or from the user terminal, and
converts the characters in the input to tokens. There are three types of tokens.

) Character tokens: any character that is passed on its own to TgX’s further levels of
processing with an appropriate category code attached.
° Control sequence tokens, of which there are two kinds: an escape character — that

is, a character of category 0 — followed by a string of ‘letters’ is lumped together
into a control word, which is a single token. An escape character followed by a
single character that is not of category 11, letter, is made into a control symbol.
If the distinction between control word and control symbol is irrelevant, both are
called control sequences.

The control symbol that results from an escape character followed \ by a space
character is called control space.

° Parameter tokens: a parameter character — that is, a character of category 6, by

default # — followed by a digit 1. .9 is replaced by a parameter token. Parameter
tokens are allowed only in the context of macros (see Chapter [TT).
A macro parameter character followed by another macro parameter character (not
necessarily with the same character code) is replaced by a single character token.
This token has category 6 (macro parameter), and the character code of the second
parameter character. The most common instance is of this is replacing ## by #g¢,
where the subscript denotes the category code.

2.5 The input processor as a finite state automaton

TEX’s input processor can be considered to be a finite state automaton with three internal
states, that is, at any moment in time it is in one of three states, and after transition to
another state there is no memory of the previous states.

2.5.1 State N: new line

State N is entered at the beginning of each new input line, and that is the only time TX
is in this state. In state N all space tokens (that is, characters of category 10) are ignored;
an end-of-line character is converted into a \par token. All other tokens bring TgX into
state M.

Victor Eijkhout — TgX by Topic 31

Chapter 2. Category Codes and Internal States

2.5.2 State S: skipping spaces

State S is entered in any mode after a control word or control space (but after no other
control symbol), or, when in state M, after a space. In this state all subsequent spaces or
end-of-line characters in this input line are discarded.

2.5.3 State M: middle of line

By far the most common state is M, ‘middle of line’. It is entered after characters of catego-
ries 1-4, 6-8, and 11-13, and after control symbols other than control space. An end-of-line
character encountered in this state results in a space token.

2.6 Accessing the full character set

Strictly speaking, TgX’s input processor is not a finite state automaton. This is because
during the scanning of the input line all trios consisting of two equal superscript characters
(category code 7) and a subsequent character (with character code < 128) are replaced by
a single character with a character code in the range 0-127, differing by 64 from that of the
original character.

This mechanism can be used, for instance, to access positions in a font corresponding to
character codes that cannot be input, for instance because they are ASCII control characters.
The most obvious examples are the ASCII (return) and (delete) characters; the correspon-
ding positions 13 and 127 in a font are accessible as ~~M and ~~7. However, since the
category of ~~7 is 15, invalid, that has to be changed before character 127 can be accessed.

In TEX3 this mechanism has been modified and extended to access 256 characters: any
quadruplet ~~xy where both x and y are lowercase hexadecimal digits 0-9, a—£, is replaced
by a character in the range 0-255, namely the character the number of which is represented
hexadecimally as xy. This imposes a slight restriction on the applicability of the earlier
mechanism: if, for instance, ~~a is typed to produce character 33, then a following 0-9,
a—f will be misunderstood.

While this process makes TgX’s input processor somewhat more powerful than a true finite
state automaton, it does not interfere with the rest of the scanning. Therefore it is concep-
tually simpler to pretend that such a replacement of triplets or quadruplets of characters,
starting with ~~, is performed in advance. In actual practice this is not possible, because an
input line may assign category code 7 to some character other than the circumflex, thereby
influencing its further processing.

2.7 Transitions between internal states

Let us now discuss the effects on the internal state of TgX’s input processor when certain
category codes are encountered in the input.

32 Victor Eijkhout — TgX by Topic

2.7. Transitions between internal states

271 0: escape character

When an escape character is encountered, TgX starts forming a control sequence token.

Three different types of control sequence can result, depending on the category code of the

character that follows the escape character.

) If the character following the escape is of category 11, letter, then TgX combines
the escape, that character and all following characters of category 11, into a control
word. After that TgX goes into state S, skipping spaces.

° With a character of category 10, space, a control symbol called control space re-
sults, and TgX goes into state S.
) With a character of any other category code a control symbol results, and TgX goes

into state M, middle of line.

The letters of a control sequence name have to be all on one line; a control sequence name
is not continued on the next line if the current line ends with a comment sign, or if (by
letting \endlinechar be outside the range 0-255) there is no terminating character.

2.7.2 1-4,7-8, 11-13: non-blank characters

Characters of category codes 14, 7-8, and 11-13 are made into tokens, and TEX goes into
state M.

2.7.3 5:end of line

Upon encountering an end-of-line character, TgX discards the rest of the line, and starts
processing the next line, in state N. If the current state was N, that is, if the line so far
contained at most spaces, a \par token is inserted; if the state was M, a space token is
inserted, and in state S nothing is inserted.

Note that by ‘end-of-line character’ a character with category code 5 is meant. This is not
necessarily the \endlinechar, nor need it appear at the end of the line. See below for
further remarks on line ends.

2.74 6: parameter

Parameter characters — usually # — can be followed by either a digit 1. .9 in the context of
macro definitions or by another parameter character. In the first case a ‘parameter token’
results, in the second case only a single parameter character is passed on as a character
token for further processing. In either case TgX goes into state M.

A parameter character can also appear on its own in an alignment preamble (see Chap-

ter 23)).

2.7.5 7: superscript

A superscript character is handled like most non-blank characters, except in the case where
it is followed by a superscript character of the same character code. The process that repla-
ces these two characters plus the following character (possibly two characters in TgX3) by
another character was described above.

Victor Eijkhout — TgX by Topic 33

Chapter 2. Category Codes and Internal States

2.7.6 9:ignored character

Characters of category 9 are ignored; TgX remains in the same state.

2.7.7 10: space

A token with category code 10 — this is called a (space token), irrespective of the character
code — is ignored in states N and S (and the state does not change); in state M TgEX goes
into state S, inserting a token that has category 10 and character code 32 (ASCII space), that
is, the character code of the space token may change from the character that was actually
1mput.

2.7.8 14: comment

A comment character causes TEX to discard the rest of the line, including the comment
character. In particular, the end-of-line character is not seen, so even if the comment was
encountered in state M, no space token is inserted.

2.7.9 15: invalid

Invalid characters cause an error message. TgX remains in the state it was in. However,
in the context of a control symbol an invalid character is acceptable. Thus \~~7 does not
cause any error messages.

2.8 Letters and other characters

In most programming languages identifiers can consist of both letters and digits (and pos-
sibly some other character such as the underscore), but control sequences in TgX are only
allowed to be formed out of characters of category 11, letter. Ordinarily, the digits and
punctuation symbols have category 12, other character. However, there are contexts where
TEX itself generates a string of characters, all of which have category code 12, even if that
is not their usual category code.

This happens when the operations \string, \number, \romannumeral, \ jobname, \fontname,
\meaning, and \the are used to generate a stream of character tokens. If any of the cha-
racters delivered by such a command is a space character (that is, character code 32), it
receives category code 10, space.

For the extremely rare case where a hexadecimal digit has been hidden in a control se-
quence, TeX allows A12—F15 to be hexadecimal digits, in addition to the ordinary A;;-F1
(here the subscripts denote the category codes).

For example,

\string\end gives four character tokens \12e1on12dio

34 Victor Eijkhout — TgX by Topic

2.9. The \par token

Note that \ 15 is used in the output only because the value of \escapechar is the character
code for the backslash. Another value of \escapechar leads to another character in the
output of \string. The \string command is treated further in Chapter[3]

Spaces can wind up in control sequences:
\csname a b\endcsname

gives a control sequence token in which one of the three characters is a space. Turning this
control sequence token into a string of characters

\expandafter\string\csname a b\endcsname
gives \12a120510b12-

As a more practical example, suppose there exists a sequence of input files filel.tex,
file2.tex, and we want to write a macro that finds the number of the input file that is
being processed. One approach would be to write

\newcount\filenumber \def\getfilenumber file#1l.{\filenumber=#1 }
\expandafter\getfilenumber\jobname.

where the letters file in the parameter text of the macro (see Section absorb that
part of the jobname, leaving the number as the sole parameter.

However, this is slightly incorrect: the letters £ile resulting from the \ jobname command
have category code 12, instead of 11 for the ones in the definition of \getfilenumber.
This can be repaired as follows:

{\escapechar=-1

\expandafter\gdef\expandafter\getfilenumber
\string\file#1.{\filenumber=#1 }

}

Now the sequence \string\file gives the four letters £12i12112€12; the \expandafter
commands let this be executed prior to the macro definition; the backslash is omitted be-
cause we put \escapechar=-1. Confining this value to a group makes it necessary to
use \gdef.

2.9 The \par token

TgX inserts a token into the input after encountering a character with category code 5, end
of line, in state N. It is good to realize when exactly this happens: since TgX leaves state N
when it encounters any token but a space, a line giving a \par can only contain characters
of category 10. In particular, it cannot end with a comment character. Quite often this fact
is used the other way around: if an empty line is wanted for the layout of the input one can
put a comment sign on that line.

Two consecutive empty lines generate two \par tokens. For all practical purposes this is
equivalent to one \par, because after the first one TgX enters vertical mode, and in vertical
mode a \par only exercises the page builder, and clears the paragraph shape parameters.

Victor Eijkhout — TgX by Topic 35

Chapter 2. Category Codes and Internal States

A \par is also inserted into the input when TEX sees a (vertical command) in unrestricted
horizontal mode. After the \par has been read and expanded, the vertical command is
examined anew (see Chapters [6] and [17).

The \par token may also be inserted by the \end command that finishes off the run of

TgX; see Chapter 28]

It is important to realize that TEX does what it normally does when encountering an empty
line (which is ending a paragraph) only because of the default definition of the \par token.
By redefining \par the behaviour caused by empty lines and vertical commands can be
changed completely, and interesting special effects can be achieved. In order to continue
to be able to cause the actions normally associated with \par, the synonym \endgraf is
available in the plain format. See further Chapter 17}

The \par token is not allowed to be part of a macro argument, unless the macro has been
declared to be \1long. A \par in the argument of a non-\1long macro prompts TgX to give
a ‘runaway argument’ message. Control sequences that have been \1let to \par (such as
\endgraf) are allowed, however.

2.10 Spaces

This section treats some of the aspects of space characters and space tokens in the initial
processing stages of TgX. The topic of spacing in text typesetting is treated in Chapter [20}

2.10.1 Skipped spaces

From the discussion of the internal states of TEX’s input processor it is clear that some
spaces in the input never reach the output; in fact they never get past the input processor.
These are for instance the spaces at the beginning of an input line, and the spaces following
the one that lets TgX switch to state S.

On the other hand, line ends can generate spaces (which are not in the input) that may wind
up in the output. There is a third kind of space: the spaces that get past the input processor,
or are even generated there, but still do not wind up in the output. These are the (optional
spaces) that the syntax of TgX allows in various places.

2.10.2 Optional spaces

The syntax of TEX has the concepts of ‘optional spaces’ and ‘one optional space’:

(one optional space) — (space token) | (empty)

(optional spaces) — (empty) | (space token)(optional spaces)
In general, (one optional space) is allowed after numbers and glue specifications, while
(optional spaces) are allowed whenever a space can occur inside a number (for example,
between a minus sign and the digits of the number) or glue specification (for example,
between plus and 1fil). Also, the definition of (equals) allows (optional spaces) before
the = sign.

Here are some examples of optional spaces.

36 Victor Eijkhout — TgX by Topic

2.10. Spaces

° A number can be delimited by (one optional space). This prevents accidents (see
Chapter [7), and it speeds up processing, as TgX can detect more easily where the
(number) being read ends. Note, however, that not every ‘number’ is a (number):
for instance the 2 in \magstep?2 is not a number, but the single token that is the
parameter of the \magstep macro. Thus a space or line end after this is signifi-
cant. Another example is a parameter number, for example #1: since at most nine
parameters are allowed, scanning one digit after the parameter character suffices.

. From the grammar of TgX it follows that the keywords £111 and £i111 consist of
£il and separate 1, each of which is a keyword (see page[278] for a more elabo-
rate discussion), and hence can be followed by optional spaces. Therefore forms
such as fil L 1 are also valid. This is a potential source of strange accidents. In
most cases, appending a \relax token prevents such mishaps.

° The primitive command may come in handy as the final command in a macro defi-
nition. As it gobbles up optional spaces, it can be used to prevent spaces following
the closing brace of an argument from winding up in the output inadvertently. For
example, in
\def\item#1{\par\leavevmode

\1lap{#1\enspace}\ignorespaces}
\item{a/}one line \item{b/} another line \item{c/}
yet another
the \ignorespaces prevents spurious spaces in the second and third item. An
empty line after \ignorespaces will still insert a \par, however.

2.10.3 Ignored and obeyed spaces

After control words spaces are ignored. This is not an instance of optional spaces, but it is
due to the fact that TeX goes into state S, skipping spaces, after control words. Similarly an
end-of-line character is skipped after a control word.
Numbers are delimited by only (one optional space), but still

a\count0=3_ ;b gives ‘ab’,
because TEX goes into state S after the first space token. The second space is therefore
skipped in the input processor of TEX; it never becomes a space token.

Spaces are skipped furthermore when TgX is in state NV, newline. When TgX is processing in
vertical mode space tokens (that is, spaces that were not skipped) are ignored. For example,
the space inserted (because of the line end) after the first box in

\par
\hbox{a}
\hbox{b}

has no effect.

Both plain TgX and IATEX define a command \obeyspaces that makes spaces significant:
after one space other spaces are no longer ignored. In both cases the basis is
\catcode‘\ =13 \def {\space}

However, there is a difference between the two cases: in plain TgX

Victor Eijkhout — TgX by Topic 37

Chapter 2. Category Codes and Internal States

\def\space{ }

while in ETEX

\def\space{\leavevmode{} }

although the macros bear other names there.

The difference between the two macros becomes apparent in the context of \obeylines:
each line end is then a \par command, implying that each next line is started in vertical
mode. An active space is expanded by the plain macro to a space token, which is ignored

in vertical mode. The active spaces in IXTgX will immediately switch to horizontal mode,
so that each space is significant.

2.10.4 More ignored spaces

There are three further places where TgX will ignore space tokens.

1. When TgX is looking for an undelimited macro argument it will accept the first
token (or group) that is not a space. This is treated in Chapter [T1]

2. In math mode space tokens are ignored (see Chapter [23).

3. After an alignment tab character spaces are ignored (see Chapter [25)).

2.10.5 (space token)

Spaces are anomalous in TEX. For instance, the \string operation assigns category code 12
to all characters except spaces; they receive category 10. Also, as was said above, TeX’s in-
put processor converts (when in state M) all tokens with category code 10 into real spaces:
they get character code 32. Any character token with category 10 is called (space token).
Space tokens with character code not equal to 32 are called ‘funny spaces’ .

After giving the character Q the category code of a space character, and

using it in a definition

\catcode Q=10 \def\q{aQb}

we get

\show\q

macro:-> a b

because the input processor changes the character code of the funny space

in the definition.
Space tokens with character codes other than 32 can be created using, for instance, \uppercase.
However, ‘since the various forms of space tokens are almost identical in behaviour, there’s
no point dwelling on the details’; see [25] p. 377.

2.10.6 Control space

The ‘control space’ command _, contributes the amount of space that a (space token)
would when the \spacefactor is 1000. A control space is not treated like a space to-
ken, or like a macro expanding to one (which is how \space is defined in plain TgX).
For instance, TEX ignores spaces at the beginning of an input line, but control space is a
(horizontal command), so it makes TgX switch from vertical to horizontal mode (and insert
an indentation box). See Chapter [20]for the space factor, and chapter [6] for horizontal and
vertical modes.

38 Victor Eijkhout — TgX by Topic

2.11. More about line ends

2.10.7 ¢

The explicit symbol “,;” for a space is character 32 in the Computer Modern typewriter ty-
peface. However, switching to \tt is not sufficient to get spaces denoted this way, because
spaces will still receive special treatment in the input processor.

One way to let spaces be typeset by ; is to set
\catcode‘\ =12

TgX will then take a space as the instruction to typeset character number 32. Moreover,
subsequent spaces are not skipped, but also typeset this way: state S is only entered after a
character with category code 10. Similarly, spaces after a control sequence are made visible
by changing the category code of the space character.

2.11 More about line ends

TgX accepts lines from an input file, excluding any line terminator that may be used. Be-
cause of this, TEX’s behaviour here is not dependent on the operating system and the line
terminator it uses (CR-LF, LF, or none at all for block storage). From the input line any trai-
ling spaces are removed. The reason for this is historic; it has to do with the block storage
mode on IBM mainframe computers. For some computer-specific problems with end-of-line
characters, see [2].

A terminator character is then appended with a character code of \endlinechar, unless
this parameter has a value that is negative or more than 255. Note that this terminator
character need not have category code 5, end of line.

2.11.1 Obeylines
Every once in a while it is desirable that the line ends in the input correspond to those in
the output. The following piece of code does the trick:

\catcode‘\""M=13 %
\def "~ "M{\par}%

The \endlinechar character is here made active, and its meaning becomes \par. The
comment signs prevent TEX from seeing the terminator of the lines of this definition, and
expanding it since it is active.

Howeyver, it takes some care to embed this code in a macro. The definition
\def\obeylines{\catcode‘\""M=13 \def~"M{\par}}

will be misunderstood: TgX will discard everything after the second ~ "M, because this has
category code 5. Effectively, this line is then

\def\obeylines{\catcode‘\""M=13 \def

To remedy this, the definition itself has to be performed in a context where ~~M is an active
character:

Victor Eijkhout — TgX by Topic 39

Chapter 2. Category Codes and Internal States

{\catcode‘\""M=13 %
\gdef\obeylines{\catcode‘\""M=13 \def~"M{\parl}}%
}

Empty lines in the input are not taken into account in this definition: these disappear, be-
cause two consecutive \par tokens are (in this case) equivalent to one. A slightly modified
definition for the line end as

\def~"M{\par\leavevmode}

remedies this: now every line end forces TX to start a paragraph. For empty lines this will
then be an empty paragraph.

2.11.2 Changing the \endlinechar

Occasionally you may want to change the \endlinechar, or the \catcode of the ordi-
nary line terminator ~~M, for instance to obtain special effects such as macros where the
argument is terminated by the line end. See page[I122]for a worked-out example.
There are a couple of traps. Consider the following:
{\catcode‘\""M=12 \endlinechar=‘\""J \catcode‘\""J=5

. ¥
This causes unintended output of both character 13 (*~M) and 10 (~~J), caused by the line
terminators of the first and last line.
Terminating the first and last line with a comment works, but replacing the first line by the
two lines

{\endlinechar=‘\""J \catcode‘\~"J=5
\catcode‘\~""M=12

is also a solution.

Of course, in many cases it is not necessary to substitute another end-of-line character;
a much simpler solution is then to put

\endlinechar=-1

which treats all lines as if they end with a comment.

2.11.3 More remarks about the end-of-line character

The character that TgX appends at the end of an input line is treated like any other character.
Usually one is not aware of this, as its category code is special, but there are a few ways to
let it be processed in an unusual way.

Terminating an input line with ~~ will (ordinarily, when \endlinechar
is 13) give ‘M’ in the output, which is the ASCII character with code 13+64.

If \""M has been defined, terminating an input line with a backslash will
execute this command. The plain format defines
\def\""M{\ }

which makes a ‘control return’ equivalent to a control space.

40 Victor Eijkhout — TgX by Topic

2.12. More about the input processor

2.12 More about the input processor
2.12.1 The input processor as a separate process

TgX’s levels of processing are all working at the same time and incrementally, but concep-
tually they can often be considered to be separate processes that each accept the completed
output of the previous stage. The juggling with spaces provides a nice illustration for this.
Consider the definition

\def\DoAssign{\count42=800}

and the call

\DoAssign 0

The input processor, the part of TgX that builds tokens, in scanning this call skips the space
before the zero, so the expansion of this call is

\count42=8000

It would be incorrect to reason ‘\DoAssign is read, then expanded, the space delimits the
number 800, so 800 is assigned and the zero is printed’. Note that the same would happen
if the zero appeared on the next line.

Another illustration shows that optional spaces appear in a different stage of processing
from that for skipped spaces:

\def\c.{\relax}
a\c.. b

expands to
a\relax b
which gives as output
ab
because spaces after the \relax control sequence are only skipped when the line is first
read, not when it is expanded. The fragment

\def\c.{\ignorespaces}
a\c. b

on the other hand, expands to

a\ignorespaces b
Executing the \ignorespaces command removes the subsequent space token, so the out-
put is

‘ab’.
In both definitions the period after \ c is a delimiting token; it is used here to prevent spaces
from being skipped.

2.12.2 The input processor not as a separate process
Considering the tokenizing of TgX to be a separate process is a convenient view, but some-

times it leads to confusion. The line

Victor Eijkhout — TgX by Topic 41

Chapter 2. Category Codes and Internal States

\catcode‘\""M=13{}

makes the line end active, and subsequently gives an ‘undefined control sequence’ error for
the line end of this line itself. Execution of the commands on the line thus influences the
scanning process of that same line.

By contrast,

\catcode ‘\""M=13

does not give an error. The reason for this is that TgX reads the line end while it is still
scanning the number 13; that is, at a time when the assignment has not been performed yet.

The line end is then converted to the optional space character delimiting the number to be
assigned.

2.12.3 Recursive invocation of the input processor

Above, the activity of replacing a parameter character plus a digit by a parameter token was
described as something similar to the lumping together of letters into a control sequence
token. Reality is somewhat more complicated than this. TEX’s token scanning mechanism
is invoked both for input from file and for input from lists of tokens such as the macro
definition. Only in the first case is the terminology of internal states applicable.

Macro parameter characters are treated the same in both cases, however. If this were not
the case it would not be possible to write things such as

\def\a{\def\b{\def \c####1{####1}}}

See page for an explanation of such nested definitions.

2.13 The @ convention

Anyone who has ever browsed through either the plain format or the IS[EX format will have
noticed that a lot of control sequences contain an ‘at’ sign: @. These are control sequences
that are meant to be inaccessible to the ordinary user.

Near the beginning of the format files the instruction

\catcode‘@=11

occurs, making the at sign into a letter, meaning that it can be used in control sequences.
Somewhere near the end of the format definition the at sign is made ‘other’ again:
\catcode‘@=12

Now why is it that users cannot call a control sequence with an at sign directly, although
they can call macros that contain lots of those ‘at-definitions’? The reason is that the control
sequences containing an @ are internalized by TEX at definition time, after which they are a
token, not a string of characters. Macro expansion then just inserts such tokens, and at that
time the category codes of the constituent characters do not matter any more.

42 Victor Eijkhout — TgX by Topic

Chapter 3

Characters

Internally, TgX represents characters by their (integer) character code. This chapter treats
those codes, and the commands that have access to them.

\char Explicit denotation of a character to be typeset.

\chardef Define a control sequence to be a synonym for a character code.

\accent Command to place accent characters.

\if Test equality of character codes.

\ifx Test equality of both character and category codes.

\let Define a control sequence to be a synonym of a token.

\uccode Query or set the character code that is the uppercase variant of a given code.

\lccode Query or set the character code that is the lowercase variant of a given code.

\uppercase Convert the (general text) argument to its uppercase form.

\lowercase Convert the (general text) argument to its lowercase form.

\string Convert a token to a string of one or more characters.

\escapechar Number of the character that is to be used for the escape character when
control sequences are being converted into character tokens. IniTgX default: 92 (\).

3.1 Character codes

Conceptually it is easiest to think that TgX works with characters internally, but in fact TgX
works with integers: the ‘character codes’.

The way characters are encoded in a computer may differ from system to system. Therefore
TgX uses its own scheme of character codes. Any character that is read from a file (or from
the user terminal) is converted to a character code according to the character code table.
A category code is then assigned based on this (see Chapter[2)). The character code table is
based on the 7-bit ASCII table for numbers under 128 (see Chapter [38).

There is an explicit conversion between characters (better: character tokens) and character
codes using the left quote (grave, back quote) character ‘: at all places where TgX expects
a (number) you can use the left quote followed by a character token or a single-character
control sequence. Thus both \count ‘a and \count ¢ \a are synonyms for \count97. See
also Chapter

43

Chapter 3. Characters

The possibility of a single-character control sequence is necessary in certain cases such as
\catcode‘\/%=11 or \def\CommentSign{\char‘\%}

which would be misunderstood if the backslash were left out. For instance

\catcode ‘%=11

would consider the =11 to be a comment. Single-character control sequences can be formed
from characters with any category code.

After the conversion to character codes any connection with external representations has
disappeared. Of course, for most characters the visible output will ‘equal’ the input (that is,
an ‘a’ causes an ‘a’). There are exceptions, however, even among the common symbols. In
the Computer Modern roman fonts there are no ‘less than’ and ‘greater than’ signs, so the
input ‘<>’ will give ‘j;’ in the output.

In order to make TgX machine independent at the output side, the character codes are also
used in the dvi file: opcodes n = 0...127 denote simply the instruction ‘take character n
from the current font’. The complete definition of the opcodes in a dvi file can be found
in [23].

3.2 Control sequences for characters

There are a number of ways in which a control sequence can denote a character. The \char
command specifies a character to be typeset; the \1et command introduces a synonym for
a character token, that is, the combination of character code and category code.

3.3 Denoting characters to be typeset: \char

Characters can be denoted numerically by, for example, \char98. This command tells
TEX to add character number 98 of the current font to the horizontal list currently under
construction.

Instead of decimal notation, it is often more convenient to use octal or hexadecimal nota-
tion. For octal the single quote is used: \char’142; hexadecimal uses the double quote:
\char"62. Note that \char’’62 is incorrect; the process that replaces two quotes by a
double quote works at a later stage of processing (the visual processor) than number scan-
ning (the execution processor).

Because of the explicit conversion to character codes by the back quote character it is also
possible to get a ‘b’ — provided that you are using a font organized a bit like the ASCIT
table — with \char ‘b or \char ‘\b.

The \char command looks superficially a bit like the =~ substitution mechanism (Chap-
ter [2). Both mechanisms access characters without directly denoting them. However, the
~~ mechanism operates in a very early stage of processing (in the input processor of TgX,
but before category code assignment); the \char command, on the other hand, comes in
the final stages of processing. In effect it says ‘typeset character number so-and-so’.

44 Victor Eijkhout — TgX by Topic

3.3. Denoting characters to be typeset: \char

There is a construction to let a control sequence stand for some character code: the com-
mand. The syntax of this is

\chardef (control sequence){equals)(number),

where the number can be an explicit representation or a counter value, but it can also be
a character code obtained using the left quote command (see above; the full definition
of (number) is given in Chapter . In the plain format the latter possibility is used in
definitions such as

\chardef\%=\%

which could have been given equivalently as

\chardef\%=37

After this command, the control symbol \% used on its own is a synonym for \char37,

that is, the command to typeset character 37 (usually the per cent character).

A control sequence that has been defined with a \chardef command can also be used as
a (number). This fact is used in allocation commands such as \newbox (see Chapters
and[3T). Tokens defined with \mathchardef can also be used this way.

3.3.1 Implicit character tokens: \let

Another construction defining a control sequence to stand for (among other things) a cha-
racter is \let:

\let(control sequence){equals)(token)

with a character token on the right hand side of the (optional) equals sign. The result is
called an implicit character token. (See page [I17|for a further discussion of \1et.)

In the plain format there are for instance synonyms for the open and close brace:
\let\bgroup={ \let\egroup=}

The resulting control sequences are called ‘implicit braces’ (see Chapter [10).

Assigning characters by \1let is different from defining control sequences by \chardef,
in the sense that \1et makes the control sequence stand for the combination of a character
code and category code.

As an example

\catcode‘|=2 % make the bar an end of group

\let\b=| % make \b a bar character

{\def\m{...}\b \m

gives an ‘undefined control sequence \m’ because the \b closed the group inside which \m
was defined. On the other hand,

\let\b=| % make \b a bar character
\catcode‘|=2 Y, make the bar character end of group

{\def\m{...}\b \m

Victor Eijkhout — TgX by Topic 45

Chapter 3. Characters

leaves one group open, and it prints a vertical bar (or whatever is in position 124 of the
current font). The first of these examples implies that even when the braces have been re-
defined (for instance into active characters for macros that format C code) the beginning-of-
group and end-of-group functionality is available through the control sequences \bgroup
and \egroup.

Here is another example to show that implicit character tokens are hard to distinguish from
real character tokens. After the above sequence

\catcode‘|=2 \let\b=|

the tests

\if\b|

and

\ifcat\b}

are both true.

Yet another example can be found in the plain format: the commands
\let\sp=" \let\sb=_

allow people without an underscore or circumflex on their keyboard to make sub- and
superscripts in mathematics. For instance:

2.

ij

If a person typing in the format itself does not have these keys, some further tricks are
needed:

{\lccode‘,=94 \lccode‘.=95 \catcode‘,=7 \catcode‘.=8
\lowercase{\global\let\sp=, \globalllet\sb=.}}

will do the job; see below for an explanation of lowercase codes. The =~ method as it
was in TgX version 2 (see page [32) cannot be used here, as it would require typing two
characters that can ordinarily not be input. With the extension in TgX version 3 it would
also be possible to write

{\catcode‘\,=7
\global\let\sp=,,5e \globalllet\sb=,,5f}

x\sp2\sb{ij} gives =

denoting the codes 94 and 95 hexadecimally.

Finding out just what a control sequence has been defined to be with \1let can be done
using \meaning: the sequence

\let\x=3 \meaning\x

gives ‘the character 3’.

34 Accents

Accents can be placed by the (horizontal command) :

\accent (8-bit number) (optional assignments)(character)

46 Victor Eijkhout — TgX by Topic

3.5. Testing characters

where (character) is a character of category 11 or 12, a \char(8-bit number) command, or
a \chardef token. If none of these four types of (character) follows, the accent is taken
to be a \char command itself; this gives an accent ‘suspended in mid-air’. Otherwise the
accent is placed on top of the following character. Font changes between the accent and the
character can be effected by the (optional assignments).

An unpleasant implication of the fact that an \accent command has to be followed by a
(character) is that it is not possible to place an accent on a ligature, or two accents on top of
each other. In some languages, such as Hindi or Vietnamese, such double accents do occur.
Positioning accents on top of each other is possible, however, in math mode.

The width of a character with an accent is the same as that of the unaccented character. TgX
assumes that the accent as it appears in the font file is properly positioned for a character
that is as high as the x-height of the font; for characters with other heights it correspondin-
gly lowers or raises the accent.

No genuine under-accents exist in TgX. They are implemented as low placed over-accents.
A way of handling them more correctly would be to write a macro that measures the follo-
wing character, and raises or drops the accent accordingly. The cedilla macro, \c, in plain
TgX does something along these lines. However, it does not drop the accent for characters
with descenders.

The horizontal positioning of an accent is controlled by \fontdimenl, slant per point.
Kerns are used for the horizontal movement. Note that, although they are inserted automa-
tically, these kerns are classified as explicit kerns. Therefore they inhibit hyphenation in the
parts of the word before and after the kern.

As an example of kerning for accents, here follows the dump of a horizontal list.

\setbox0=\hbox{\it \‘1}
\showbox0

gives

\hbox (9.58334+0.0)x2.55554

.\kern -0.61803 (for accent)
.\hbox (6.94444+0.0)x5.11108, shifted -2.6389

..\tenit ~°R
.\kern -4.49306 (for accent)
.\tenit 1

Note that the accent is placed first, so afterwards the italic correction of the last character
is still available.

3.5 Testing characters

Equality of character codes is tested by \if:
\1if(token;)(tokens)

Victor Eijkhout — TgX by Topic 47

Chapter 3. Characters

Tokens following this conditional are expanded until two unexpandable tokens are left.
The condition is then true if those tokens are character tokens with the same character
code, regardless of category code.

An unexpandable control sequence is considered to have character code 256 and category
code 16 (so that it is unequal to anything except another control sequence), except in the
case where it had been \1let to a non-active character token. In that case it is considered to
have the character code and category code of that character. This was mentioned above.
The test \ifcat for category codes was mentioned in Chapter 2} the test

\ifx(token;)(tokens)
can be used to test for category code and character code simultaneously. The tokens follo-
wing this test are not expanded. However, if they are macros, TgX tests their expansions for
equality.
Quantities defined by \chardef can be tested with \ifnum:
\chardef\a=‘x \chardef\b=‘y \ifnum\a=\b % is false
based on the fact (see Chapter[7) that (chardef token)s can be used as numbers.

3.6 Uppercase and lowercase
3.6.1 Uppercase and lowercase codes
To each of the character codes correspond an uppercase code and a lowercase code (for
still more codes see below). These can be assigned by
\uccode(number) (equals) (number)
and
\1lccode(number)(equals)(number).

InIniTEX codes ‘a.. ‘z, ‘A.. ‘Zhave uppercase code ‘A. . ‘Z and lowercase code ‘a. . ‘z.
All other character codes have both uppercase and lowercase code zero.

3.6.2 Uppercase and lowercase commands

The commands \uppercase{...} and \lowercase{...} go through their argument

lists, replacing all character codes of explicit character tokens by their uppercase and lower-

case code respectively if these are non-zero, without changing the category codes.

The argument of \uppercase and \lowercase is a (general text), which is defined as
(general text) — (filler){(balanced text) (right brace)

(for the definition of (filler) see Chapter meaning that the left brace can be implicit,
but the closing right brace must be an explicit character token with category code 2. TeX
performs expansion to find the opening brace.

Uppercasing and lowercasing are executed in the execution processor; they are not ‘macro
expansion’ activities like \number or \string. The sequence (attempting to produce \A)

48 Victor Eijkhout — TgX by Topic

3.7. Codes of a character

\expandafter\csname\uppercase{a}\endcsname

gives an error (TgX inserts an \endcsname before the \uppercase because \uppercase
is unexpandable), but

\uppercase{\csname a\endcsname}

works.

As an example of the correct use of \uppercase, here is a macro that tests if a character
is uppercase:

\def\ifIsUppercase#1{\uppercase{\if#1}#1}

The same test can be performed by \ifnum‘#1=\uccode ‘#1.

Hyphenation of words starting with an uppercase character, that is, a character not equal to

its own \1lccode, is subject to the \uchyph parameter: if this is positive, hyphenation of
capitalized words is allowed. See also Chapter |19}

3.6.3 Uppercase and lowercase forms of keywords

Each character in TgX keywords, such as pt, can be given in uppercase or lowercase form.
For instance, pT, Pt, pt, and PT all have the same meaning. TEX does not use the \uccode
and \lccode tables here to determine the lowercase form. Instead it converts uppercase
characters to lowercase by adding 32 — the ASCII difference between uppercase and lower-
case characters — to their character code. This has some implications for implementations
of TgX for non-roman alphabets; see page 370 of the TgX book, [25].

3.6.4 Creative use of \uppercase and \lowercase

The fact that \uppercase and \lowercase do not change category codes can sometimes
be used to create certain character-code—category-code combinations that would otherwise
be difficult to produce. See for instance the explanation of the \newif macro in Chapter[13]
and another example on page 6]

For a slightly different application, consider the problem (solved by Rainer Schopf) of,
given a counter \newcount\mycount, writing character number \mycount to the terminal.
Here is a solution:

\lccode ‘a=\mycount \chardef\terminal=16
\lowercase{\write\terminal{a}}

The \lowercase command effectively changes the argument of the \write command
from ‘a’ into whatever it should be.

3.7 Codes of a character

Each character code has a number of {(codename)s associated with it. These are integers in
various ranges that determine how the character is treated in various contexts, or how the
occurrence of that character changes the workings of TgX in certain contexts.

The code names are as follows:

Victor Eijkhout — TgX by Topic 49

Chapter 3. Characters

\catcode (4-bit number) (0-15); the category to which a character belongs. This is trea-
ted in Chapter 2|

\mathcode (15-bit number) (0-"7FFF) or "8000; determines how a character is treated
in math mode. See Chapter [21]

\delcode (27-bit number) (0—"7 FFF FFF); determines how a character is treated after
\left or \right in math mode. See page[192

\sfcode integer; determines how spacing is affected after this character. See Chapter[20]

\lccode, \uccode (8-bit number) (0-255); lowercase and uppercase codes — these were
treated above.

3.8 Converting tokens into character strings

The command \string takes the next token and expands it into a string of separate cha-
racters. Thus

\tt\string\control

will give \control in the output, and

\tt\string$

will give $, but, noting that the string operation comes after the tokenizing,

\tt\string},

will not give %, because the comment sign is removed by TgX’s input processor. Therefore,

this command will ‘string’ the first token on the next line.

The \string command is executed by the expansion processor, thus it is expanded unless
explicitly inhibited (see Chapter [I2)).

3.8.1 Output of control sequences

In the above examples the typewriter font was selected, because the Computer Modern
roman font does not have a backslash character. However, TgX need not have used the
backslash character to display a control sequence: it uses character number \escapechar.
This same value is also used when a control sequence is output with \write, \message,
or \errmessage, and it is used in the output of \show, \showthe and \meaning. If
\escapechar is negative or more than 255, the escape character is not output; the default
value (set in IniTgX) is 92, the number of the backslash character.

For use in a \write statement the \string can in some circumstances be replaced by
\noexpand (see page [134).

3.8.2 Category codes of a \string

The characters that are the result of a \string command have category code 12, except
for any spaces in a stringed control sequence; they have category code 10. Since inside
a control sequence there are no category codes, any spaces resulting from \string are
of necessity only space characters, that is, characters with code 32. However, TgX’s input

50 Victor Eijkhout — TgX by Topic

3.8. Converting tokens into character strings

processor converts all space tokens that have a character code other than 32 into character
tokens with character code 32, so the chances are pretty slim that ‘funny spaces’ wind up
in control sequences.

Other commands with the same behaviour with respect to category codes as \string, are
\number, \romannumeral, \ jobname, \fontname, \meaning, and \the.

Victor Eijkhout — TgX by Topic 51

Chapter 4

Fonts

In text mode TEX takes characters from a ‘current font’. This chapter describes how fonts
are identified to TgX, and what attributes a font can have.

\font Declare the identifying control sequence of a font.

\fontname The external name of a font.

\nullfont Name of an empty font that TgX uses in emergencies.

\hyphenchar Number of the hyphen character of a font.

\defaulthyphenchar Value of \hyphenchar when a font is loaded. Plain TgX default: ‘\-.
\fontdimen Access various parameters of fonts.

\char47 Italic correction.

\noboundary Omit implicit boundary character.

4.1 Fonts

In TgX terminology a font is the set of characters that is contained in one external font file.
During processing, TeX decides from what font a character should be taken. This decision
is taken separately for text mode and math mode.

When TgX is processing ordinary text, characters are taken from the ‘current font’. External
font file names are coupled to control sequences by statements such as
\font\MyFont=myfont10

which makes TgX load the file myfont10.tfm. Switching the current font to the font des-
cribed in that file is then done by

\MyFont

The status of the current font can be queried: the sequence

\the\font

produces the control sequence for the current font.

Math mode completely ignores the current font. Instead it looks at the ‘current family’,

which can contain three fonts: one for text style, one for script style, and one for scriptscript
style. This is treated in Chapter 21]

52

4.2. Font declaration

See [42] for a consistent terminology of fonts and typefaces.

With ‘virtual fonts’ (see [24])) it is possible that what looks like one font to TgX resides in
more than one physical font file. See further page 263

4.2 Font declaration

Somewhere during a run of TgX or IniTgX the coupling between an internal identifying
control sequence and the external file name of a font has to be made. The syntax of the
command for this is

\font(control sequence){equals)(file name) (at clause)
where

(at clause) — at (dimen) | scaled (number) | (optional spaces)

Font declarations are local to a group.

By the (at clause) the user specifies that some magnified version of the font is wanted.
The (at clause) comes in two forms: if the font is given scaled f TEX multiplies all its
font dimensions for that font by f/1000; if the font has a design size dpt and the (at
clause) is at ppt TgX multiplies all font data by p/d. The presence of an (at clause) makes
no difference for the external font file (the .tfm file) that TgX reads for the font; it just
multiplies the font dimensions by a constant.

After such a font declaration, using the defined control sequence will set the current font to
the font of the control sequence.

4.2.1 Fonts and tfm files

The external file needed for the font is a tfm (X font metrics) file, which is taken inde-
pendent of any (at clause) in the \font declaration. If the tfm file has been loaded already
(for instance by IniTEX when it constructed the format), an assignment of that font file can
be reexecuted without needing recourse to the tfm file.

Font design sizes are given in the font metrics files. The cmr10 font, for instance, has a
design size of 10 point. However, there is not much in the font that actually has a size of
10 points: the opening and closing parentheses are two examples, but capital letters are
considerably smaller.

4.2.2 Querying the current font and font names
It was already mentioned above that the control sequence which set the current font can be
retrieved by the command \the\font. This is a special case of
\the(font)
where

(font) — \font | (fontdef token) | (family member)
(family member) — (font range)(4-bit number)
(font range) — \textfont | \scriptfont | \scriptscriptfont

Victor Eijkhout — TgX by Topic 53

Chapter 4. Fonts

A (fontdef token) is a control sequence defined by \font, or the predefined control se-
quence \nullfont. The concept of (family member) is only relevant in math mode.

Also, the external name of fonts can be retrieved:
\fontname(font)

gives a sequence of character tokens of category 12 (but space characters get category 10)
that spells the font file name, plus an (at clause) if applicable.

After

\font\tenroman=cmr10 \tenroman

the calls \the\font and \the\tenroman both give \tenroman. The
call \fontname\tenroman gives cmr10.

4.2.3 \nullfont

TEX always knows a font that has no characters: the \nullfont. If no font has been spe-
cified, or if in math mode a family member is needed that has not been specified, TeX will
take its characters from the nullfont. This control sequence qualifies as a (fontdef token): it
acts like any other control sequence that stands for a font; it just does not have an associated
tfm file.

4.3 Font information

During a run of TgX the main information needed about the font consists of the dimensions
of the characters. TgX finds these in the font metrics files, which usually have extension
.tfm. Such files contain

° global information: the \fontdimen parameters, and some other information,
° dimensions and the italic corrections of characters, and
° ligature and kerning programs for characters.

Also, the design size of a font is specified in the tfm file; see above. The definition of the
tfm format can be found in [23]].

4.3.1 Font dimensions

Text fonts need to have at least seven \fontdimen parameters (but TgX will take zero for
unspecified parameters); math symbol and math extension fonts have more (see page [208).
For text fonts the minimal set of seven comprises the following:

L. the slant per point; this dimension is used for the proper horizontal positioning of
accents;

2. the interword space: this is used unless the user specifies an explicit \spaceskip;
see Chapter [20}

3. interword stretch: the stretch component of the interword space;

4. interword shrink: the shrink component of the interword space;

5. the x-height: the value of the (internal unit) ex, which is usually about the height

of the lowercase letter ‘x’;

54 Victor Eijkhout — TgX by Topic

4.3. Font information

6. the quad width: the value of the (internal unit) em, which is approximately the
width of the capital letter ‘M’; and

7. the extra space: the space added to the interword space at the end of sentences
(that is, when \spacefactor > 2000) unless the user specifies an explicit \x-
spaceskip.

Parameters 1 and 5 are purely information about the font and there is no point in vary-
ing them. The values of other parameters can be changed in order to adjust spacing; see
Chapter 20| for examples of changing parameters 2, 3, 4, and 7.

Font dimensions can be altered in a (font assignment), which is a (global assignment) (see
page [106):

\fontdimen({number)(font) (equals) (dimen)
See above for the definition of (font).

4.3.2 Kerning

Some combinations of characters should be moved closer together than would be the case
if their bounding boxes were to be just abutted. This fine spacing is called kerning, and a
proper kerning is as essential to a font as the design of the letter shapes.

Consider as an example
‘Vo’ versus the unkerned variant ‘Vo’

Kerning in TgX is controlled by information in the tfm file, and is therefore outside the
influence of the user. The tfm file can be edited, however (see Chapter [33).

The \kern command has (almost) nothing to do with the phenomenon of kerning; it is
explained in Chapter 8]

4.3.3 Italic correction

The primitive control symbol \/ inserts the ‘italic correction’ of the previous character
or ligature. Such a correction may be necessary owing to the definition of the ‘bounding
box’ of a character. This box always has vertical sides, and the width of the character as TgX
perceives it is the distance between these sides. However, in order to achieve proper spacing
for slanted or italic typefaces, characters may very well project outside their bounding
boxes. The italic correction is then needed if such an overhanging character is followed by
a character from a non-slanting typeface.

Compare for instance

‘TEX has’ to ‘TgX has’,
where the second version was typed as
{\italic\TeX\/} has

The size of the italic correction of each character is determined by font information in the
font metrics file; for the Computer Modern fonts it is approximately half the ‘overhang’ of
the characters; see [[17]). Italic correction is not the same as \fontdimen1, slant per point.
That font dimension is used only for positioning accents on top of characters.

Victor Eijkhout — TgX by Topic 55

Chapter 4. Fonts

An italic correction can only be inserted if the previous item processed by TgX was a
character or ligature. Thus the following solution for roman text inside an italic passage
does not work:

{\italic Some text {\/\roman not} emphasized}

The italic correction has no effect here, because the previous item is glue.

4.3.4 Ligatures

Replacement of character sequences by ligatures is controlled by information in the tfm
file of a font. Ligatures are formed from (character) commands: sequences such as £i are
replaced by ‘fi’ in some fonts.

Other ligatures traditionally in use are between £, ££i, £1, and ££1; in some older works
ft and st can be found, and similarly to the £1 ligature £k and £b can also occur.

Ligatures in TgX can be formed between explicit character tokens, \char commands, and
(chardef token)s. For example, the sequence \char ‘f\char ‘1 is replaced by the ‘fi’ liga-
ture, if such a ligature is part of the font.

Unwanted ligatures can be suppressed in a number of ways: the unwanted ligature ‘halflife’
can for instance be prevented by
half{}1life, half{1}ife, half\/life, or half\hbox{}1life

but the solution using italic correction is not equivalent to the others.

4.3.5 Boundary ligatures

Each word is surrounded by a left and a right boundary character (TgX3 only). This makes
phenomena possible such as the two different sigmas in Greek: one at the end of a word,
and one for every other position. This can be realized through a ligature with the boundary
character. A \noboundary command immediately before or after a word suppresses the
boundary character at that place.

In general, the ligature mechanism has become more complicated with the transition to
TEX version 3; see [20].

56 Victor Eijkhout — TgX by Topic

Chapter 5

Boxes

The horizontal and vertical boxes of TEX are containers for pieces of horizontal and vertical
lists. Boxes can be stored in box registers. This chapter treats box registers and such aspects
of boxes as their dimensions, and the way their components are placed relative to each
other.

\hbox Construct a horizontal box.

\vbox Construct a vertical box with reference point of the last item.

\vtop Construct a vertical box with reference point of the first item.

\vcenter Construct a vertical box vertically centred on the math axis; this command can
only be used in math mode.

\vsplit Split off the top part of a vertical box.

\box Use a box register, emptying it.

\setbox Assign a box to a box register.

\copy Use a box register, but retain the contents.

\ifhbox \ifvbox Test whether a box register contains a horizontal/vertical box.

\ifvoid Test whether a box register is empty.

\newbox Allocate a new box register.

\unhbox \unvbox Unpack a box register containing a horizontal/vertical box, adding the
contents to the current horizontal/vertical list, and emptying the register.

\unhcopy \unvcopy The same as \unhbox/\unvbox, but do not empty the register.

\ht \dp \wd Height/depth/width of the box in a box register.

\boxmaxdepth Maximum allowed depth of boxes. Plain TgX default: \maxdimen.

\splitmaxdepth Maximum allowed depth of boxes generated by \vsplit.

\badness Badness of the most recently constructed box.

\hfuzz \vfuzz Excess size that TX tolerates before it considers a horizontal/vertical
box overfull.

\hbadness \vbadness Amount of tolerance before TgX reports an underfull or overfull
horizontal/vertical box.

\overfullrule Width of the rule that is printed to indicate overfull horizontal boxes.

\hsize Line width used for text typesetting inside a vertical box.

\vsize Height of the page box.

\lastbox Register containing the last item added to the current list, if this was a box.

\raise \lower Adjust vertical positioning of a box in horizontal mode.

57

Chapter 5. Boxes

\moveleft \moveright Adjust horizontal positioning of a box in vertical mode.
\everyhbox \everyvbox Token list inserted at the start of a horizontal/vertical box.

5.1 Boxes

In this chapter we shall look at boxes. Boxes are containers for pieces of horizontal or
vertical lists. Boxes that are needed more than once can be stored in box registers.
When TgX expects a (box), any of the following forms is admissible:

o \hbox(box specification){(horizontal material)}
. \vbox(box specification){(vertical material)}

o \vtop(box specification){(vertical material)}

o \box(8-bit number)

. \copy(8-bit number)

. \vsplit(8-bit number)to(dimen)

. \lastbox

A (box specification) is defined as

(box specification) — (filler)
| to (dimen)(filler) | spread (dimen)(filler)

An (8-bit number) is a number in the range 0-255.

The braces surrounding box material define a group; they can be explicit characters of
categories 1 and 2 respectively, or control sequences \let to such characters; see also
below.

A (box) can in general be used in horizontal, vertical, and math mode, but see below for
the \1astbox. The connection between boxes and modes is explored further in Chapter[6]

The box produced by \vcenter — a command that is allowed only in math mode —is not a
(box). For instance, it can not be assigned with \setbox; see further Chapter

The \vsplit operation is treated in Chapter[27]

5.2 Box registers

There are 256 box registers, numbered 0-255. Either a box register is empty (‘void’), or it
contains a horizontal or vertical box. This section discusses specifically box registers; the
sizes of boxes, and the way material is arranged inside them, is treated below.

5.2.1 Allocation: \newbox

The plain TgX \newbox macro allocates an unused box register:
\newbox\MyBox

after which one can say

58 Victor Eijkhout — TgX by Topic

5.2. Box registers

\setbox\MyBox=. ..

or

\box\MyBox

and so on. Subsequent calls to this macro give subsequent box numbers; this way macro
collections can allocate their own boxes without fear of collision with other macros.

The number of the box is assigned by \chardef (see Chapter[3T)). This implies that \MyBox
is equivalent to, and can be used as, a (number). The control sequence \newbox is an
\outer macro. Newly allocated box registers are initially empty.

5.2.2 Usage: \setbox, \box, \copy

A register is filled by assigning a (box) to it:
\setbox(number) (equals) (box)
For example, the (box) can be explicit
\setbox37=\hbox{...} or \setbox37=\vbox{...}
or it can be a box register:
\setbox37=\box38
Usually, box numbers will have been assigned by a \newbox command.
The box in a box register is appended by the commands \box and \copy to whatever list
TEX is building: the call
\box38

appends box 38. To save memory space, box registers become empty by using them: TgX
assumes that after you have inserted a box by calling \boxnn in some mode, you do not
need the contents of that register any more and empties it. In case you do need the contents
of a box register more than once, you can \copy it. Calling \copynn is equivalent to
\boxnn in all respects except that the register is not cleared.

It is possible to unwrap the contents of a box register by ‘unboxing’ it using the commands
\unhbox and \unvbox, and their copying versions \unhcopy and \unvcopy. Whereas a
box can be used in any mode, the unboxing operations can only be used in the appropriate
mode, since in effect they contribute a partial horizontal or vertical list (see also Chapter|[6)).
See below for more information on unboxing registers.

5.2.3 Testing: \ifvoid, \ifhbox, \ifvbox

Box registers can be tested for their contents:

\ifvoid(number)
is true if the box register is empty. Note that an empty, or ‘void’, box register is not the
same as a register containing an empty box. An empty box is still either a horizontal or a
vertical box; a void register can be used as both.
The test

\ifhbox(number)

Victor Eijkhout — TgX by Topic 59

Chapter 5. Boxes

is true if the box register contains a horizontal box;
\ifvbox(number)

is true if the box register contains a vertical box. Both tests are false for void registers.

5.24 The \lastbox

When TX has built a partial list, the last box in this list is accessible as the \lastbox.
This behaves like a box register, so you can remove the last box from the list by assigning
the \lastbox to some box register. If the last item on the current list is not a box, the
\lastbox acts like a void box register. It is not possible to get hold of the last box in the
case of the main vertical list. The \1astbox is then always void.

As an example, the statement

{\setbox0=\1lastbox}

removes the last box from the current list, assigning it to box register 0. Since this assi-
gnment occurs inside a group, the register is cleared at the end of the group. At the start
of a paragraph this can be used to remove the indentation box (see Chapter [I6). Another
example of \lastbox can be found on page[71]

Because the \lastbox is always empty in external vertical mode, it is not possible to get
hold of boxes that have been added to the page. However, it is possible to dissect the page
once it is in \box255, for instance doing

\vbox{\unvbox255{\setbox0=\1lastbox}}
inside the output routine.
If boxes in vertical mode have been shifted by \moveright or \moveleft, or if boxes in

horizontal mode have been raised by \raise or lowered by \lower, any information about
this displacement due to such a command is lost when the \lastbox is taken from the list.

53 Natural dimensions of boxes
5.3.1 Dimensions of created horizontal boxes

Inside an \hbox all constituents are lined up next to each other, with their reference points
on the baseline of the box, unless they are moved explicitly in the vertical direction by
\lower or \raise.

The resulting width of the box is the sum of the widths of the components. Thus the width
of

\hbox{\hskiplcm}

is positive, and the width of

\hbox{\hskip-1cm}

is negative. By way of example,
a\hbox{\kern-lem b}--

60 Victor Eijkhout — TgX by Topic

5.3. Natural dimensions of boxes

gives as output
ba

which shows that a horizontal box can have negative width.

The height and depth of an \hbox are the maximum amount that constituent boxes project
above and below the baseline of the box. They are non-negative when the box is created.

The commands \lower and \raise are the only possibilities for vertical movement inside
an \hbox (other than including a \vbox inside the \hbox, of course); a (vertical command)
— such as \vskip — is not allowed in a horizontal box, and \par, although allowed, does
not do anything inside a horizontal box.

5.3.2 Dimensions of created vertical boxes

Inside a \vbox vertical material is lined up with the reference points on the vertical line
through the reference point of the box, unless components are moved explicitly in the
horizontal direction by \moveleft or \moveright.

The reference point of a vertical box is always located at the left boundary of the box. The
width of a vertical box is then the maximal amount that any material in the box sticks to
the right of the reference point. Material to the left of the reference point is not taken into
account in the width. Thus the result of

a\vbox{\hbox{\kern-lem b}}--
is
ba—

This should be contrasted with the above example.

The calculation of height and depth is different for vertical boxes constructed by \vbox and
\vtop. The ground rule is that a \vbox has a reference point that lies on the baseline of its
last component, and a \vtop has its reference point on the baseline of the first component.
In general, the depth (height) of a \vbox (\vtop) can be non-zero if the last (first) item is
a box or rule.

The height of a \vbox is then the sum of the heights and depths of all components except
the last, plus the height of that last component; the depth of the \vbox is the depth of its last
component. The depth of a \vtop is the sum of the depth of the first component and the
heights and depths of all subsequent material; its height is the height of the first component.

However, the actual rules are a bit more complicated when the first component of a \vtop
or the last component of a \vbox is not a box or rule. If the last component of a \vbox
is a kern or a glue, the depth of that box is zero; a \vtop’s height is zero unless its first
component is a box or rule. (Note the asymmetry in these definitions; see below for an
example illustrating this.) The depth of a \vtop, then, is equal to the total height plus
depth of all enclosed material minus the height of the \vtop.

There is a limit on the depth of vertical boxes: if the depth of a \vbox or \vtop calculated
by the above rules would exceed , the reference point of the box is moved down by the
excess amount. More precisely, the excess depth is added to the natural height of the box.

Victor Eijkhout — TgX by Topic 61

Chapter 5. Boxes

If the box had a to or spread specification, any glue is set anew to take the new height
into account.

Ordinarily, \boxmaxdepth is set to the maximum dimension possible in TgX. It is for in-
stance reduced during some of the calculations in the plain TEX output routine; see Chap-
ter 28]

5.3.3 Examples

Horizontal boxes are relatively straightforward. Their width is the distance between the
‘beginning’ and the ‘end’ of the box, and consequently the width is not necessarily positive.
With
\setbox0=\hbox{aa} \setboxl=\hbox{\copyO \hskip-\wd0}
the \box1 has width zero;

/\box1/ gives ‘/ha’
The height and depth of a horizontal box cannot be negative: in

\setbox0=\hbox{\vrule height 5pt depth 5pt}
\setbox1=\hbox{\raise 10pt \boxO}

the \box1 has depth Opt and height 15pt

Vertical boxes are more troublesome than horizontal boxes. Let us first treat their width.
After

\setbox0=\hbox{\hskip 10pt}

the box in the \boxO register has a width of 10pt. Defining
\setbox1=\vbox{\moveleft 5pt \copyO}

the \box1 will have width 5pt; material to the left of the reference point is not accounted
for in the width of a vertical box. With

\setbox2=\vbox{\moveright 5pt \copyO}
the \box2 will have width 15pt.

The depth of a \vbox is the depth of the last item if that is a box, so
\vbox{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}
has height 10pt and depth 5pt, and

\vbox{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}

has height Opt and depth 5pt. With a glue or kern as the last item in the box, the resulting
depth is zero, so

\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip 5pt}

has height 15pt and depth Opt;

\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip -5pt}

has height 5pt and depth Opt.

The height of a \vtop behaves (almost) the same with respect to the first item of the box,

as the depth of a \vbox does with respect to the last item. Repeating the above examples
with a \vtop gives the following:

62 Victor Eijkhout — TgX by Topic

5.4. More about box dimensions

\vtop{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}

has height Opt and depth 15pt, and

\vtop{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}
has height Opt and depth 5pt;

\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip 5pt}

has height 5pt and depth 10pt, and

\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip -5pt}
has height 5pt and depth Opt.

5.4 More about box dimensions
5.4.1 Predetermined dimensions

The size of a box can be specified in advance with a (box specification); see above for the
syntax. Any glue in the box is then set in order to reach the required size. Prescribing the
size of the box is done by

\hbox to (dimen) {.. .2}, \vbox to (dimen) {...2}

If stretchable or shrinkable glue is present in the box, it is stretched or shrunk in order to
give the box the specified size. Associated with this glue setting is a badness value (see
Chapter [8). If no stretch or shrink — whichever is necessary — is present, the resulting box
will be underfull or overfull respectively. Error reporting for over/underfull boxes is treated
below.

Another command to let a box have a size other than the natural size is
\hbox spread (dimen) {. ..}, \vbox spread (dimen) {...}

which tells TgX to set the glue in such a way that the size of the box is a specified amount
more than the natural size.

Box specifications for \vtop vertical boxes are somewhat difficult to interpret. TgX con-
structs a \vtop by first making a \vbox, including glue settings induced by a (box specification);
then it computes the height and depth by the above rules. Glue setting is described in Chap-

ter[8]

5.4.2 Changes to box dimensions

The dimensions of a box register are accessible by the commands \ht, \dp, and \wd; for
instance \dp13 gives the depth of box 13. However, not only can boxes be measured this
way; by assigning values to these dimensions TgX can even be fooled into thinking that a
box has a size different from its actual. However, changing the dimensions of a box does
not change anything about the contents; in particular it does not change the way the glue is
set.

Various formats use this in ‘smash’ macros: the macro defined by
\def\smash#1{{\setbox0=\hbox{#1}\dp0=0pt \ht0=0pt \boxO\relax}}

Victor Eijkhout — TgX by Topic 63

Chapter 5. Boxes

places its argument but annihilates its height and depth; that is, the output does show the
whole box, but further calculations by TgX act as if the height and depth were zero.

Box dimensions can be changed only by setting them. They are (box dimen)s, which can
only be set in a (box size assignment), and not, for instance changed with \advance.

Note that a (box size assignment) is a (global assignment): its effect transcends any groups
in which it occurs (see Chapter[I0). Thus the output of

\setbox0=\hbox{---} {\wd0=0pt} a\boxOb
is ‘ab—".
The limits that hold on the dimensions with which a box can be created (see above) do not

hold for explicit changes to the size of a box: the assignment \dpO=-2pt for a horizontal
box is perfectly admissible.

5.4.3 Moving boxes around

In a horizontal box all constituent elements are lined up with their reference points at the
same height as the reference point of the box. Any box inside a horizontal box can be lifted
or dropped using the macros \raise and \lower.

Similarly, in a vertical box all constituent elements are lined up with their reference points
underneath one another, in line with the reference point of the box. Boxes can now be
moved sideways by the macros \moveleft and \moveright.

Only boxes can be shifted thus; these operations cannot be applied to, for instance, charac-
ters or rules.

5.4.4 Box dimensions and box placement

TEX places the components of horizontal and vertical lists by maintaining a reference line
and a current position on that line. For horizontal lists the reference line is the baseline of
the surrounding \hbox; for vertical lists it is the vertical line through the reference point of
the surrounding \vbox.

In horizontal mode a component is placed as follows. The current position coincides initi-
ally with the reference point of the surrounding box. After that, the following actions are
carried out.

1. If the component has been shifted by \raise or \lower, shift the current position
correspondingly.
2. If the component is a horizontal box, use this algorithm recursively for its contents;

if it is a vertical box, go up by the height of this box, putting a new current position
for the enclosed vertical list there, and place its components using the algorithm
for vertical lists below.

3. Move the current position (on the reference line) to the right by the width of the
component.

For the list in a vertical box TgX’s current position is initially at the upper left corner of
that box, as explained above, and the reference line is the vertical line through that point; it

64 Victor Eijkhout — TgX by Topic

5.5. Overfull and underfull boxes

also runs through the reference point of the box. Enclosed components are then placed as
follows.

1. If a component has been shifted using \moveleft or \moveright, shift the cur-
rent position accordingly.

2. Put the component with its upper left corner at the current position.

3. If the component is a vertical box, use this algorithm recursively for its contents;

if it is a horizontal box, its reference point can be found below the current position
by the height of the box. Put the current position for that box there, and use the
above algorithm for horizontal lists.
4, Go down by the height plus depth of the box (that is, starting at the upper left
corner of the box) on the reference line, and continue processing vertically.
Note that the above processes do not describe the construction of boxes. That would (for
instance) involve for vertical boxes the insertion of baselineskip glue. Rather, it describes
the way the components of a finished box are arranged in the output.

5.4.5 Boxes and negative glue

Sometimes it is useful to have boxes overlapping instead of line up. An easy way to do this
is to use negative glue. In horizontal mode
{\dimen0=\wd8 \box8 \kern-\dimenO}

places box 8 without moving the current location.

More versatile are the macros \11lap and \rlap, defined as
\def\1llap#1{\hbox to Opt{\hss #1}}

and

\def\rlap#1{\hbox to Opt{#1\hssl}}

that allow material to protrude left or right from the current location. The \hss glue is equi-
valent to \hskip Opt plus 1fil minus 1fil, which absorbs any positive or negative
width of the argument of \11lap or \rlap.

The sequence

\1lap{\hbox to 10pt{a\hfill}}

is effectively the same as

\hbox{\hskip-10pt \hbox to 10pt{a\hfil}}
which has a total width of Opt.

5.5 Overfull and underfull boxes

If a box has a size specification TgX will stretch or shrink glue in the box. For glue with only
finite stretch or shrink components the badness (see Chapter [I9) of stretching or shrinking
is computed. In TgX version 3 the badness of the box most recently constructed is available
for inspection by the user through the \badness parameter. Values for badness range 0—
10000, but if the box is overfull it is 1 000 000.

Victor Eijkhout — TgX by Topic 65

Chapter 5. Boxes

When TgX considers the badness too large, it gives a diagnostic message. Let us first con-
sider error reporting for horizontal boxes.

Horizontal boxes of which the glue has to stretch are never reported if \hbadness >
10 000; otherwise TEX reports them as ‘underfull” if their badness is more than \hbadness.

Glue shrinking can lead to ‘overfull” boxes: a box is called overfull if the available shrink
is less than the shrink necessary to meet the box specification. An overfull box is only
reported if the difference in shrink is more than \hfuzz, or if \hbadness < 100 (and it
turns out that using all available shrinkability has badness 100).

Setting \hfuzz=1pt will let TgX ignore boxes that can not shrink enough
if they lack less than 1pt. In

\hbox to 1pt{\hskip3pt minus .5pt}

\hbox to 1pt{\hskip3pt minus 1.5pt}

only the first box will give an error message: it is 1.5pt too big, whereas
the second lacks .5pt which is less than \hfuzz.

Also, boxes that shrink but that are not overfull can be reported: if a box is ‘tight’, that is,
if it uses at least half its shrinkability, TgX reports this fact if the computed badness (which
is between 13 and 100) is more than \hbadness.

For horizontal and vertical boxes this error reporting is almost the same, with parameters
\vbadness and \vfuzz. The difference is that for horizontal overfull boxes TgX will draw
arule to the right of the box that has the same height as the box, and width \overfullrule.
No overfull rule ensues if the \tabskip glue in an \halign cannot be shrunk enough.

5.6 Opening and closing boxes

The opening and closing braces of a box can be either explicit, that is, character tokens of
category 1 and 2, or implicit, a control sequence \1let to such a character. After the ope-
ning brace the \everyhbox or \everyvbox tokens are inserted. If this box appeared in a
\setbox assignment any \afterassignment token is inserted even before the ‘everybox’
tokens.

\everyhbox{b}
\afterassignment a
\setbox0=\hbox{c}
\showbox0

gives

> \box0=

\hbox (6.94444+0.0)x15.27782
\tenrm a

.\tenrm b
.\kern0.27779
.\tenrm c

Implicit braces can be used to let a box be opened or closed by a macro, for example:

66 Victor Eijkhout — TgX by Topic

5.7. Unboxing

\def\openbox#1{\setbox#1=\hbox\bgroup}
\def\closebox#1{\egroup\DoSomethingWithBox#1}
\openbox0 ... \closebox0

This mechanism can be used to scoop up paragraphs:

\everypar{\setbox\parbox=
\vbox\bgroup
\everypar{}
\def\par{\egroup\UseBox\parbox}}

Here the \everypar opens the box and lets the text be set in the box: starting for instance
Begin a text ...
gives the equivalent of
\setbox\parbox=\vbox{Begin a text
Inside the box \par has been redefined, so
. a text ends.\par
is equivalent to
. a text ends.}\Usebox\parbox

In this example, the \UseBox command can only treat the box as a whole; if the elements
of the box should somehow be treated separately another approach is necessary. In
\everypar{\setbox\parbox=
\vbox\bgroup\everypar{1}/,
\def\par{\endgraf\HandleLines
\egroup\box\parbox}}
\def\HandleLines{ ... \lastbox ... }

the macro \HandleLines can have access to successive elements from the vertical list of
the paragraph. See also the example on page[71]

5.7 Unboxing

Boxes can be unwrapped by the commands \unhbox and \unvbox, and by their copy-
ing versions \unhcopy and \unvcopy. These are horizontal and vertical commands (see
Chapter|[6), considering that in effect they contribute a partial horizontal or vertical list. It is
not possible to \unhbox a register containing a \vbox or vice versa, but a void box register
can both be \unhboxed and \unvboxed.

Unboxing takes the contents of a box in a box register and appends them to the surrounding
list; any glue can then be set anew. Thus

\setbox0=\hbox to 1lcm{\hfil} \hbox to 2cm{\unhbox0}

is completely equivalent to

\hbox to 2cm{\hfil}

and not to

\hbox to 2cm{\kernicm}

Victor Eijkhout — TgX by Topic 67

Chapter 5. Boxes

The intrinsically horizontal nature of \unhbox is used to define
\def\leavevmode{\unhbox\voidb@x}

This command switches from vertical mode to horizontal without adding anything to the
horizontal list. However, the subsequent \indent caused by this transition adds an inden-
tation box. In horizontal mode the \1leavevmode command has no effect. Note that here it
is not necessary to use \unhcopy, because the register is empty anyhow.

Beware of the following subtlety: unboxing in vertical mode does not add interline glue
between the box contents and any preceding item. Also, the value of \prevdepth is not
changed, so glue between the box contents and any following item will occur only if there
was something preceding the box; interline glue will be based on the depth of that preceding
item. Similarly, unboxing in horizontal mode does not influence the \spacefactor.

5.8 Text in boxes

Both horizontal and vertical boxes can contain text. However, the way text is treated differs.
In horizontal boxes the text is placed in one straight line, and the width of the box is
in principle the natural width of the text (and other items) contained in it. No (vertical
command)s are allowed inside a horizontal box, and \par does nothing in this case.

For vertical boxes the situation is radically different. As soon as a character, or any other
(horizontal command) (see page , is encountered in a vertical box, TgX starts building
a paragraph in unrestricted horizontal mode, that is, just as if the paragraph were directly
part of the page. At the occurrence of a (vertical command) (see page , or at the end
of the box, the paragraph is broken into lines using the current values of parameters such
as \hsize.

Thus
\hbox to 3cm{\vbox{some reasonably long text}}

will not give a paragraph of width 3 centimetres (it gives an overfull horizontal box if
\hsize > 3cm). However,

\vbox{\hsize=3cm some reasonably long text}

will be 3 centimetres wide.

A paragraph of text inside a vertical box is broken into lines, which are packed in horizontal
boxes. These boxes are then stacked in internal vertical mode, possibly with \baselineskip

and \lineskip separating them (this is treated in Chapter [T3)). This process is also used
for text on the page; the boxes are then stacked in outer vertical mode.

If the internal vertical list is empty, no \parskip glue is added at the start of a paragraph.

Because text in a horizontal box is not broken into lines, there is a further difference bet-
ween text in restricted and unrestricted horizontal mode. In restricted horizontal mode no
discretionary nodes and whatsit items changing the value of the current language are inser-
ted. This may give problems if the text is subsequently unboxed to form part of a paragraph.

See Chapter [I9]for an explanation of these items, and [[7] for a way around this problem.

68 Victor Eijkhout — TgX by Topic

5.9. Assorted remarks

5.9 Assorted remarks
5.9.1 Forgetting the \box

After \newcount\foo, one can use \foo on its own to get the \foo counter. For boxes,
however, one has to use \box\foo to get the \foo box. The reason for this is that there
exists no separate \boxdef command, so \chardef is used (see Chapter [31).

Suppose \newbox\foo allocates box register 25; then typing \foo is
equivalent to typing \char25.

5.9.2 Special-purpose boxes

Some box registers have a special purpose:

\box255 is by used TgX internally to give the page to the output routine.
\voidb@x is the number of a box register allocated in plain.tex; it is supposed
to be empty always. It is used in the macro \leavevmode and others.

. when a new \insert is created with the plain TgX \newinsert macro, a \count,
\dimen, \skip, and \box all with the same number are reserved for that insert.
The numbers for these registers count down from 254.

5.9.3 The height of a vertical box in horizontal mode

In horizontal mode a vertical box is placed with its reference point aligned vertically with
the reference point of the surrounding box. TgX then traverses its contents starting at the
left upper corner; that is, the point that lies above the reference point by a distance of the
height of the box. Changing the height of the box implies then that the contents of the box
are placed at a different height.
Consider as an example
\hbox{a\setbox0=\vbox{\hbox{b}}\box0 c}
which gives

abc
and
\hbox{a\setbox0=\vbox{\hbox{b}}\ht0=0cm \box0 c}
which gives

ac

By contrast, changing the width of a box placed in vertical mode has no effect on its place-
ment.

5.9.4 More subtleties with vertical boxes

Since there are two kinds of vertical boxes, the \vbox and the \vtop, using these two kinds
nested may lead to confusing results. For instance,

\vtop{\vbox{...}}

Victor Eijkhout — TgX by Topic 69

Chapter 5. Boxes

is completely equivalent to just
\vbox{...}

It was stated above that the depth of a \vbox is zero if the last item is a kern or glue, and
the height of a \vtop is zero unless the first item in it is a box. The above examples used a
kern for that first or last item, but if, in the case of a \vtop, this item is not a glue or kern,
one is apt to overlook the effect that it has on the surrounding box. For instance,

\vtop{\write16{...}...}

has zero height, because the write instruction is packed into a ‘whatsit’ item that is placed
on the current, that is, the vertical, list. The remedy here is
\vtop{\leavevmode\write16{...}...}

which puts the whatsit in the beginning of the paragraph, instead of above it.

Placement of items in a vertical list is sometimes a bit tricky. There is for instance a diffe-
rence between how vertical and horizontal boxes are treated in a vertical list. Consider the
following examples. After \offinterlineskip the first example

\vbox{\hbox{a}
\setbox0=\vbox{\hbox{ (}}
\ht0=0pt \dpO=Opt \box0
\hbox{ b}}

b

while a slight variant

\vbox{\hbox{a}
\setbox0=\hbox{ (}
\ht0=0pt \dpO=0pt \box0
\hbox{ b}}

%

The difference is caused by the fact that horizontal boxes are placed with respect to their
reference point, but vertical boxes with respect to their upper left corner.

gives

gives

5.9.5 Hanging the \lastbox back in the list

You can pick the last box off a vertical list that has been compiled in (internal) vertical
mode. However, if you try to hang it back in the list the vertical spacing may go haywire.
If you just hang it back,

\setbox\tmpbox=\lastbox
\usethetmpbox \box\tmpbox

baselineskip glue is added a second time. If you ‘unskip’ prior to hanging the box back,

\setbox\tmpbox=\1lastbox \unskip
\usethetmpbox \box\tmpbox

70 Victor Eijkhout — TgX by Topic

5.9. Assorted remarks

things go wrong in a more subtle way. The (internal dimen) \prevdepth (which controls
interline glue; see Chapter [I3)) will have a value based on the last box, but what you need
for the proper interline glue is a depth based on one box earlier. The solution is not to
unskip, but to specify \nointerlineskip:

\setbox\tmpbox=\lastbox
\usethetmpbox \nointerlineskip \box\tmpbox

5.9.6 Dissecting paragraphs with \lastbox

Repeatedly applying \last. .. and \un. .. macros can be used to take a paragraph apart.
Here is an example of that.

In typesetting advertisement copy, a way of justifying paragraphs has become popular
in recent years that is somewhere between flushright and raggedright setting. Lines that
would stretch beyond certain limits are set with their glue at natural width. This paragraph
exemplifies this procedure; the macros follow next.

\newbox\linebox \newbox\snapbox

\def\eatlines{
\setbox\linebox\lastbox % check the last line
\ifvoid\linebox
\else % if it’s not empty
\unskip\unpenalty % take whatever is
{\eatlines} % above it;

% collapse the line
\setbox\snapbox\hbox{\unhcopy\linebox}
% depending on the difference
\ifdim\wd\snapbox<.98\wd\linebox
\box\snapbox % take the one or the other,
\else \box\linebox \fi
\fi}
This macro can be called as
\vbox{ ... some text ... \par\eatlines}

or it can be inserted automatically with \everypar; see [10].

In the macro \eatlines, the \lastbox is taken from a vertical list. If the list is empty
the last box will test true on \ifvoid. These boxes containing lines from a paragraph are
actually horizontal boxes: the test \ifhbox applied to them would give a true result.

Victor Eijkhout — TgX by Topic 71

Chapter 6

Horizontal and Vertical Mode

At any point in its processing TgX is in some mode. There are six modes, divided in three
categories:

1. horizontal mode and restricted horizontal mode,
2. vertical mode and internal vertical mode, and
3. math mode and display math mode.

The math modes will be treated elsewhere (see page [201). Here we shall look at the ho-
rizontal and vertical modes, the kinds of objects that can occur in the corresponding lists,
and the commands that are exclusive for one mode or the other.

\ifhmode Test whether the current mode is (possibly restricted) horizontal mode.

\ifvmode Test whether the current mode is (possibly internal) vertical mode.

\ifinner Test whether the current mode is an internal mode.

\vadjust Specify vertical material for the enclosing vertical list while in horizontal mode.

\showlists Write to the log file the contents of the partial lists currently being built in
all modes.

6.1 Horizontal and vertical mode

When not typesetting mathematics, TgX is in horizontal or vertical mode, building ho-
rizontal or vertical lists respectively. Horizontal mode is typically used to make lines of
text; vertical mode is typically used to stack the lines of a paragraph on top of each other.
Note that these modes are different from the internal states of TgX’s input processor (see

page[31).

6.1.1 Horizontal mode

The main activity in horizontal mode is building lines of text. Text on the page and text in
a \vbox or \vtop is built in horizontal mode (this might be called ‘paragraph mode’); if
the text is in an \hbox there is only one line of text, and the corresponding mode is the
restricted horizontal mode.

72

6.2. Horizontal and vertical commands

In horizontal mode all material is added to a horizontal list. If this list is built in unrestricted
horizontal mode, it will later be broken into lines and added to the surrounding vertical list.

Each element of a horizontal list is one of the following:

a box (a character, ligature, \vrule, or a (box)),

a discretionary break,

a whatsit (see Chapter [30),

vertical material enclosed in \mark, \vadjust, or \insert,
glue or leaders, a kern, a penalty, or a math-on/off item.

The items in the last point are all discardable. Discardable items are called that, because
they disappear in a break. Breaking of horizontal lists is treated in Chapter[T9)

6.1.2 Vertical mode

Vertical mode can be used to stack items on top of one another. Most of the time, these
items are boxes containing the lines of paragraphs.

Stacking material can take place inside a vertical box, but the items that are stacked can
also appear by themselves on the page. In the latter case TEgX is in vertical mode; in the
former case, inside a vertical box, TEX operates in internal vertical mode.

In vertical mode all material is added to a vertical list. If this list is built in external vertical
mode, it will later be broken when pages are formed.

Each element of a vertical list is one of the following:

a box (a horizontal or vertical box or an \hrule),
a whatsit,

a mark,

glue or leaders, a kern, or a penalty.

The items in the last point are all discardable. Breaking of vertical lists is treated in Chap-

ter27

There are a few exceptional conditions at the beginning of a vertical list: the value of
\prevdepth is set to —~1000pt. Furthermore, no \parskip glue is added at the top of an
internal vertical list; at the top of the main vertical list (the top of the ‘current page’) no
glue or other discardable items are added, and \topskip glue is added when the first box
is placed on this list (see Chapters[26]and [27).

6.2 Horizontal and vertical commands

Some commands are so intrinsically horizontal or vertical in nature that they force TgX to
go into that mode, if possible. A command that forces TgX into horizontal mode is called a
(horizontal command); similarly a command that forces TgX into vertical mode is called a
(vertical command).

However, not all transitions are possible: TgX can switch from both vertical modes to (un-
restricted) horizontal mode and back through horizontal and vertical commands, but no

Victor Eijkhout — TgX by Topic 73

Chapter 6. Horizontal and Vertical Mode

transitions to or from restricted horizontal mode are possible (other than by enclosing ho-
rizontal boxes in vertical boxes or the other way around). A vertical command in restricted
horizontal mode thus gives an error; the \par command in restricted horizontal mode has
no effect.

The horizontal commands are the following:

o any (letter), (otherchar), \char, a control sequence defined by \chardef, or
\noboundary;

. \accent, \discretionary, the discretionary hyphen \- and control space _j;

. \unhbox and \unhcopy;

° \vrule and the (horizontal skip) commands \hskip, \hfil, \hfill, \hss, and
\hfilneg;

. \valign;

. math shift ($).

The vertical commands are the following:

. \unvbox and \unvcopy;

. \hrule and the (vertical skip) commands \vskip, \vfil, \vfill, \vss, and
\vfilneg;

° \halign;

° \end and \dump.

Note that the vertical commands do not include \par; nor are \indent and \noindent
horizontal commands.

The connection between boxes and modes is explored below; see Chapter@] for more on
the connection between rules and modes.

6.3 The internal modes

Restricted horizontal mode and internal vertical mode are the variants of horizontal mode
and vertical mode that hold inside an \hbox and \vbox (or \vtop or \vcenter) respec-
tively. However, restricted horizontal mode is rather more restricted in nature than internal
vertical mode. The third internal mode is non-display math mode (see Chapter 23)).

6.3.1 Restricted horizontal mode

The main difference between restricted horizontal mode, the mode in an \hbox, and unre-
stricted horizontal mode, the mode in which paragraphs in vertical boxes and on the page
are built, is that you cannot break out of restricted horizontal mode: \par does nothing in
this mode. Furthermore, a (vertical command) in restricted horizontal mode gives an error.
In unrestricted horizontal mode it would cause a \par token to be inserted and vertical
mode to be entered (see also Chapter[I7).

74 Victor Eijkhout — TgX by Topic

6.4. Boxes and modes

6.3.2 Internal vertical mode

Internal vertical mode, the vertical mode inside a \vbozx, is a lot like external vertical mode,
the mode in which pages are built. A (horizontal command) in internal vertical mode, for
instance, is perfectly valid: TgX then starts building a paragraph in unrestricted horizontal
mode.

One difference is that the commands \unskip and \unkern have no effect in external
vertical mode, and \lastbox is always empty in external vertical mode. See further pages
and

The entries of alignments (see Chapter [23]) are processed in internal modes: restricted ho-
rizontal mode for the entries of an \halign, and internal vertical mode for the entries of
a \valign. The material in \vadjust and \insert items is also processed in internal
vertical mode; furthermore, TgX enters this mode when processing the \output token list.

The commands \end and \dump (the latter exists only in IniTgX) are not allowed in internal
vertical mode; furthermore, \dump is not allowed inside a group (see Chapter [33).

6.4 Boxes and modes

There are horizontal and vertical boxes, and there is horizontal and vertical mode. Not
surprisingly, there is a connection between the boxes and the modes. One can ask about
this connection in two ways.

6.4.1 What box do you use in what mode?

This is the wrong question. Both horizontal and vertical boxes can be used in both hori-
zontal and vertical mode. Their placement is determined by the prevailing mode at that
moment.

6.4.2 What mode holds in what box?

This is the right question. When an \hbox starts, TgX is in restricted horizontal mode. Thus
everything in a horizontal box is lined up horizontally.

When a \vbox is started, TgX is in internal vertical mode. Boxes of both kinds and other
items are then stacked on top of each other.

6.4.3 Mode-dependent behaviour of boxes

Any (box) (see Chapter 5| for the full definition) can be used in horizontal, vertical, and
math mode. Unboxing commands, however, are specific for horizontal or vertical mode.
Both \unhbox and \unhcopy are (horizontal command)s, so they can make TEX switch
from vertical to horizontal mode; both \unvbox and \unvcopy are (vertical command)s,
so they can make TgX switch from horizontal to vertical mode.

Victor Eijkhout — TgX by Topic 75

Chapter 6. Horizontal and Vertical Mode

In horizontal mode the \spacefactor is set to 1000 after a box has been placed. In verti-
cal mode the \prevdepth is set to the depth of the box placed. Neither statement holds for
unboxing commands: after an \unhbox or \unhcopy the spacefactor is not altered, and af-
ter \unvbox or \unvcopy the \prevdepth remains unchanged. After all, these commands
do not add a box, but a piece of a (horizontal or vertical) list.

The operations \raise and \lower can only be applied to a box in horizontal mode;
similarly, \moveleft and \moveright can only be applied in vertical mode.

6.5 Modes and glue

Both in horizontal and vertical mode TgX can insert glue items the size of which is deter-
mined by the preceding object in the list.

For horizontal mode the amount of glue that is inserted for a space token depends on the
\spacefactor of the previous object in the list. This is treated in Chapter 20}

In vertical mode TEX inserts glue to keep boxes at a certain distance from each other. This
glue is influenced by the height of the current item and the depth of the previous one. The
depth of items is recorded in the \prevdepth parameter (see Chapter[I3).

The two quantities \prevdepth and \spacefactor use the same internal register of TEX.
Thus the \prevdepth can be used or asked only in vertical mode, and the \spacefactor
only in horizontal mode.

6.6 Migrating material

The three control sequences \insert, \mark, and \vadjust can be given in a paragraph
(the first two can also occur in vertical mode) to specify material that will wind up on the
surrounding vertical list. Note that this need not be the main vertical list: it can be a vertical
box containing a paragraph of text. In this case a \mark or \insert command will not
reach the page breaking algorithm.

When several migrating items are specified in a certain line of text, their left-to-right order
is preserved when they are placed on the surrounding vertical list. These items are placed
directly after the horizontal box containing the line of text in which they were specified:
they come before any penalty or glue items that are automatically inserted (see page [I78).

6.6.1 \vadjust

The command
\vadjust(filler){(vertical mode material)}

is only allowed in horizontal and math modes (but it is not a (horizontal command)). Ver-
tical mode material specified by \vadjust is moved from the horizontal list in which the
command is given to the surrounding vertical list, directly after the box in which it occur-
red.

76 Victor Eijkhout — TgX by Topic

6.7. Testing modes

In the current line a \vadjust item was placed to put the bullet in the margin.

Any vertical material in a \vadjust item is processed in internal vertical mode, even
though it will wind up on the main vertical list. For instance, the \ifinner test is true in a
\vadjust, and at the start of the vertical material \prevdepth=-1000pt.

6.7 Testing modes

The three conditionals \ifhmode, \ifvmode, and \ifinner can distinguish between the
four modes of TX that are not math modes. The \ifinner test is true if TgX is in restric-
ted horizontal mode or internal vertical mode (or in non-display math mode). Exceptional
condition: during a \write TgX is in a ‘no mode’ state. The tests \ifhmode, \ifvmode,
and \ifmmode are then all false.

Inspection of all current lists, including the ‘recent contributions’ (see Chapter[27)), is pos-
sible through the command \showlists. This command writes to the log file the contents
of all lists that are being built at the moment the command is given.

Consider the example
a\hfil\break b\par
c\hfill\break d
\hbox{e\vbox{f\showlists

Here the first paragraph has been broken into two lines, and these have been added to the
current page. The second paragraph has not been concluded or broken into lines.

The log file shows the following. TgX was busy building a paragraph (starting with an
indentation box 20pt wide):

horizontal mode entered at line 3

\hbox (0.0+0.0)x20.0

\tenrm f

spacefactor 1000

This paragraph was inside a vertical box:

internal vertical mode entered at line 3
prevdepth ignored

The vertical box was in a horizontal box,

restricted horizontal mode entered at line 3
\tenrm e

spacefactor 1000

which was part of an as-yet unfinished paragraph:

horizontal mode entered at line 2
\hbox(0.0+0.0)x20.0

\tenrm c

\glue 0.0 plus 1.0fill

\penalty -10000

\tenrm d

Victor Eijkhout — TgX by Topic 77

Chapter 6. Horizontal and Vertical Mode

etc.
spacefactor 1000

Note how the infinite glue and the \break penalty are still part of the horizontal list.

Finally, the first paragraph has been broken into lines and added to the current page:

vertical mode entered at line O
current page:
\glue (\topskip) 5.69446
\hbox (4.30554+0.0)x469.75499, glue set 444.75497fil
.\hbox (0.0+0.0)x20.0
.\tenrm a
\glue 0.0 plus 1.0fil
.\penalty -10000
.\glue (\rightskip) 0.0
\penalty 300
\glue(\baselineskip) 5.05556
\hbox (6.94444+0.0)x469.75499, glue set 464.19943fil
.\tenrm b
.\penalty 10000
.\glue(\parfillskip) 0.0 plus 1.0fil
\glue(\rightskip) 0.0
etc.
total height 22.0 plus 1.0
goal height 643.20255
prevdepth 0.0

78 Victor Eijkhout — TgX by Topic

Chapter 7

Numbers

In this chapter integers and their denotations will be treated, the conversions that are possi-
ble either way, allocation and use of \count registers, and arithmetic with integers.

\number Convert a (number) to decimal representation.

\romannumeral Convert a positive (number) to lowercase roman representation.
\ifnum Test relations between numbers.

\ifodd Test whether a number is odd.

\ifcase Enumerated case statement.

\count Prefix for count registers.

\countdef Define a control sequence to be a synonym for a \count register.
\newcount Allocate an unused \count register.

\advance Arithmetic command to add to or subtract from a (numeric variable).
\multiply Arithmetic command to multiply a (numeric variable).

\divide Arithmetic command to divide a (numeric variable).

7.1 Numbers and (number)s

An important part of the grammar of TgX is the rigorous definition of a (number), the
syntactic entity that TgX expects when semantically an integer is expected. This definition
will take the largest part of this chapter. Towards the end, \count registers, arithmetic, and
tests for numbers are treated.

For clarity of discussion a distinction will be made here between integers and numbers,
but note that a (number) can be both an ‘integer’ and a ‘number’. ‘Integer’ will be taken
to denote a mathematical number: a quantity that can be added or multiplied. ‘Number’
will be taken to refer to the printed representation of an integer: a string of digits, in other
words.

7.2 Integers

Quite a few different sorts of objects can function as integers in TgX. In this section they
will all be treated, accompanied by the relevant lines from the grammar of TgX.

79

Chapter 7. Numbers

First of all, an integer can be positive or negative:

(number) — (optional signs)(unsigned number)

(optional signs) — (optional spaces)

| (optional signs)(plus or minus) (optional spaces)
A first possibility for an unsigned integer is a string of digits in decimal, octal, or hexade-
cimal notation. Together with the alphabetic constants these will be named here (integer
denotation). Another possibility for an integer is an internal integer quantity, an (internal
integer); together with the denotations these form the (normal integer)s. Lastly an integer
can be a (coerced integer): an internal (dimen) or (glue) quantity that is converted to an
integer value.

(unsigned number) — (normal integer) | (coerced integer)
(normal integer) — (integer denotation) | (internal integer)
(coerced integer) — (internal dimen) | (internal glue)

All of these possibilities will be treated in sequence.

7.2.1 Denotations: integers

Anything that looks like a number can be used as a (number): thus 42 is a number. However,
bases other than decimal can also be used:

7123

is the octal notation for 1 x 82 + 2 x 8! + 3 x 89 = 83, and

"123

is the hexadecimal notation for 1 x 162 4+ 2 x 16 4+ 3 x 16° = 291.

(integer denotation) — (integer constant)(one optional space)
| > (octal constant) (one optional space)
| " (hexadecimal constant) (one optional space)

The octal digits are 0-7; a digit 8 or 9 following an octal denotation is not part of the
number: after

\count0="078

the \countO will have the value 7, and the digit 8 is typeset.

The hexadecimal digits are 0-9, A-F, where the A—F can have category code 11 or 12. The
latter has a somewhat far-fetched justification: the characters resulting from a \string
operation have category code 12. Lowercase a—f are not hexadecimal digits, although (in

TEX3) they are used for hexadecimal notation in the ‘circumflex method’ for accessing all
character codes (see Chapter [3)).

7.2.2 Denotations: characters

A character token is a pair consisting of a character code, which is a number in the range
0-255, and a category code. Both of these codes are accessible, and can be used as a
(number).

80 Victor Eijkhout — TgX by Topic

7.2. Integers

The character code of a character token, or of a single letter control sequence, is accessible
through the left quote command: both ‘a and ‘\a denote the character code of a, which
can be used as an integer.

(integer denotation) — ‘(character token) (one optional space)

In order to emphasize that accessing the character code is in a sense using a denotation,
the syntax of TgX allows an optional space after such a ‘character constant’. The left quote
must have category 12.

7.2.3 Internal integers

The class of (internal integers) can be split into five parts. The (codename)s and (special
integer)s will be treated separately below; furthermore, there are the following.

. The contents of \count registers; either explicitly used by writing for instance
\count23, or by referring to such a register by means of a control sequence that
was defined by \countdef: after
\countdef\MyCount=23
\MyCount is called a (countdef token), and it is fully equivalent to \count23.

° All parameters of TgX that hold integer values; this includes obvious ones such as
\linepenalty, but also parameters such as \hyphenchar(font) and \parshape
(if a paragraph shape has been defined for n lines, using \parshape in the context
of a (number) will yield this value of n).

° Tokens defined by \chardef or \mathchardef. After
\chardef\foo=74
the control sequence \foo can be used on its own to mean \char74, but in a
context where a (number) is wanted it can be used to denote 74:

\count\foo

is equivalent to \count74. This fact is exploited in the allocation routines for
registers (see Chapter 31).

A control sequence thus defined by \chardef is called a (chardef token); if it is
defined by \mathchardef it is called a (mathchardef token).

Here is the full list:

(internal integer) — (integer parameter)

| (special integer) | \lastpenalty

| (countdef token) | \count(8-bit number)

| (chardef token) | (mathchardef token)

| (codename) (8-bit number)

| \hyphenchar(font) | \skewchar(font) | \parshape

| \inputlineno | \badness

(integer parameter) — | \adjdemerits | \binoppenalty
| \brokenpenalty | \clubpenalty | \day

| \defaulthyphenchar | \defaultskewchar

| \delimiterfactor | \displaywidowpenalty

| \doublehyphendemerits | \endlinechar | \escapechar
| \exhypenpenalty | \fam | \finalhyphendemerits

| \floatingpenalty | \globaldefs | \hangafter

Victor Eijkhout — TgX by Topic 81

Chapter 7. Numbers

| \hbadness | \hyphenpenalty | \interlinepenalty

| \linepenalty | \looseness | \mag

| \maxdeadcycles | \month

| \newlinechar | \outputpenalty | \pausing

| \postdisplaypenalty | \predisplaypenalty

| \pretolerance | \relpenalty | \showboxbreadth

| \showboxdepth | \time | \tolerance

| \tracingcommands | \tracinglostchars | \tracingmacros
| \tracingonline | \tracingoutput | \tracingpages

| \tracingparagraphs | \tracingrestores | \tracingstats
| \uchyph | \vbadness | \widowpenalty | \year

Any internal integer can function as an (internal unit), which — preceded by (optional
spaces) — can serve as a (unit of measure). Examples of this are given in Chapter [3]

7.2.4 Internal integers: other codes of a character
The \catcode command (which was described in Chapter[2) is a (codename), and like the
other code names it can be used as an integer.

(codename) — \catcode | \mathcode | \uccode | \1lccode
| \sfcode | \delcode

A (codename) has to be followed by an (8-bit number).

Uppercase and lowercase codes were treated in Chapter [3} the \sfcode is treated in Chap-
ter 20} the \mathcode and \delcode are treated in Chapter [21]

7.2.5 (special integer)

One of the subclasses of the internal integers is that of the special integers.
(special integer) — \spacefactor | \prevgraf
| \deadcycles | \insertpenalties

An assignment to any of these is called an (intimate assignment), and is automatically
global (see Chapter [T0).

7.2.6 Other internal quantities: coersion to integer

TgX provides a conversion between dimensions and integers: if an integer is expected, a
(dimen) or (glue) used in that context is converted by taking its (natural) size in scaled
points. However, only (internal dimen)s and (internal glue) can be used this way: no di-
mension or glue denotations can be coerced to integers.

7.2.7 Trailing spaces

The syntax of TX defines integer denotations (decimal, octal, and hexadecimal) and ‘back-
quoted’ character tokens to be followed by (one optional space). This means that TgX reads
the token after the number, absorbing it if it was a space token, and backing up if it was
not.

82 Victor Eijkhout — TgX by Topic

7.3. Numbers

Because TgX’s input processor goes into the state ‘skipping spaces’ after it has seen one
space token, this scanning behaviour implies that integer denotations can be followed by
arbitrarily many space characters in the input. Also, a line end is admissible. However, only
one space token is allowed.

7.3 Numbers

TgX can perform an implicit conversion from a string of digits to an integer. Conversion
from a representation in decimal, octal, or hexadecimal notation was treated above. The
conversion the other way, from an (internal integer) to a printed representation, has to be
performed explicitly. TigX provides two conversion routines, \number and \romannumeral.
The command \number is equivalent to \the when followed by an internal integer. These
commands are performed in the expansion processor of TgX, that is, they are expanded
whenever expansion has not been inhibited.

Both commands yield a string of tokens with category code 12; their argument is a (number).
Thus \romannumeral51, \romannumeral\year, and \number\linepenalty are valid,

and so is \number13. Applying \number to a denotation has some uses: it removes leading

zeros and superfluous plus and minus signs.

A roman numeral is a string of lowercase ‘roman digits’, which are characters of category
code 12. The sequence

\uppercase\expandafter{\romannumeral ...}

gives uppercase roman numerals. This works because TgX expands tokens in order to find
the opening brace of the argument of \uppercase. If \romannumeral is applied to a
negative number, the result is simply empty.

7.4 Integer registers
Integers can be stored in \count registers:
\count (8-bit number)

is an (integer variable) and an (internal integer). As an integer variable it can be used in a
(variable assignment):

(variable assignment) — (integer variable) (equals) (number) | ...
As an internal integer it can be used as a (number):
(number) — (optional signs)(internal integer) | ...

Synonyms for \count registers can be introduced by the \countdef command in a (shorthand
definition):

\countdef (control sequence) (equals)(8-bit number)

Victor Eijkhout — TgX by Topic 83

Chapter 7. Numbers

A control sequence defined this way is called a (countdef token), and it serves as an
(internal integer).

The plain TgX macro \newcount (which is declared \outer) uses the \countdef com-
mand to allocate an unused \count register. Counters 0-9 are scratch registers, like all
registers with numbers 0-9. However, counters 0-9 are used for page identification in the
dvi file (see Chapter [33)), so they should be used as scratch registers only inside a group.
Counters 10-22 are used for plain TgX’s bookkeeping of allocation of registers. Counter
255 is also scratch.

7.5 Arithmetic

The user can perform some arithmetic in TgX, and TgX also performs arithmetic internally.
User arithmetic is concerned only with integers; the internal arithmetic is mostly on fixed-
point quantities, and only in the case of glue setting on floating-point numbers.

7.5.1 Arithmetic statements

TEX allows the user to perform some arithmetic on integers. The statement
\advance(integer variable) (optional by)(number)

adds the value of the (number) — which may be negative — to the (integer variable). Simi-
larly,

\multiply(integer variable)(optional by)(number)
multiplies the value of the (integer variable), and
\divide(integer variable)(optional by)(number)
divides an (integer variable).
Multiplication and division are also available for any so-called (numeric variable): their
most general form is
\multiply(numeric variable)(optional by)(number)
where

(numeric variable) — (integer variable) | (dimen variable)
| (glue variable) | (muglue variable)

230

The result of an arithmetic operation should not exceed in absolute value.

Division of integers yields an integer; that is, the remainder is discarded. This raises the
question of how rounding is performed when either operand is negative. In such cases TgX
performs the division with the absolute values of the operands, and takes the negative of
the result if exactly one operand was negative.

7.5.2 Floating-point arithmetic

Internally some arithmetic on floating-point quantities is performed, namely in the calcula-
tion of glue set ratios. However, machine-dependent aspects of rounding cannot influence
the decision process of TgX, so machine independence of TgX is guaranteed in this respect
(sufficient accuracy of rounding is enforced by the Trip test of [21]]).

84 Victor Eijkhout — TgX by Topic

7.6. Number testing

7.5.3 Fixed-point arithmetic

All fractional arithmetic in TgX is performed in fixed-point arithmetic of ‘scaled integers’:
multiples of 2716, This ensures the machine independence of TgX. Printed representations
of scaled integers are rounded to 5 decimal digits.

In ordinary 32-bit implementations of TEX the largest integers are 23! — 1 in absolute size.
The user is not allowed to specify dimensions larger in absolute size than 230 — 1: two such
dimensions can be added or subtracted without overflow on a 32-bit system.

7.6 Number testing

The most general test for integers in TgX is
\ifnum(number;) (relation)(numbers)
where (relation) is a <, >, or = character, all of category 12.

Distinguishing between odd and even numbers is done by
\ifodd(number)
A numeric case statement is provided by
\ifcase(number)(casep)\or. . .\or(case,)\else(other cases)\fi

where the \else-part is optional. The tokens for (case;) are processed if the number turns
out to be ¢; other cases are skipped, similarly to what ordinarily happens in conditionals

(see Chapter [T3).

7.7 Remarks
7.7.1 Character constants

In formats and macro collections numeric constants are often needed. There are several
ways to implement these in TgX.

Firstly,

\newcount\SomeConstant \SomeConstant=42

This is wasteful, as it uses up a \count register.

Secondly,

\def\SomeConstant{42}

Better but accident prone: TgX has to expand to find the number — which in itself is a slight
overhead — and may inadvertently expand some tokens that should have been left alone.
Thirdly,

\chardef\SomeConstant=42

This one is fine. A (chardef token) has the same status as a \count register: both are
(internal integer)s. Therefore a number defined this way can be used everywhere that a
\count register is feasible. For large numbers the \chardef can be replaced by \mathchardef,
which runs to "7FFF = 32 767. Note that a (mathchardef token) can usually only appear

in math mode, but in the context of a number it can appear anywhere.

Victor Eijkhout — TgX by Topic 85

Chapter 7. Numbers

7.7.2 Expanding too far / how far
It is a common mistake to write pieces of TgX code where TX will inadvertently expand
something because it is trying to compose a number. For example:

\def\par{\endgraf\penalty200}
...\par \number\pageno

Here the page number will be absorbed into the value of the penalty.

Now consider

\newcount\midpenalty \midpenalty=200
\def\par{\endgraf\penalty\midpenalty}
...\par \number\pageno

Here the page number is not scooped up by mistake: TgX is trying to locate a (number) after
the \penalty, and it finds a (countdef token). This is not converted to a representation in
digits, so there is never any danger of the page number being touched.

It is possible to convert a (countdef token) first to a representation in digits before assigning
it
\penalty\number\midpenalty

and this brings back again all previous problems of expansion.

86 Victor Eijkhout — TgX by Topic

Chapter 8

Dimensions and Glue

In TEX vertical and horizontal white space can have a possibility to adjust itself through
‘stretching’ or ‘shrinking’. An adjustable white space is called ‘glue’. This chapter treats
all technical concepts related to dimensions and glue, and it explains how the badness of
stretching or shrinking a certain amount is calculated.

\dimen Dimension register prefix.

\dimendef Define a control sequence to be a synonym for a \dimen register.
\newdimen Allocate an unused dimen register.

\skip Skip register prefix.

\skipdef Define a control sequence to be a synonym for a \skip register.
\newskip Allocate an unused skip register.

\ifdim Compare two dimensions.

\hskip Insert in horizontal mode a glue item.

\hfil Equivalentto \hskip Ocm plus 1fil.

\hfilneg Equivalent to \hskip Ocm minus 1fil.

\hfill Equivalent to \hskip Ocm plus 1fill.

\hss Equivalent to \hskip Ocm plus 1fil minus 1fil.

\vskip Insert in vertical mode a glue item.

\vfil Equivalent to \vskip Ocm plus 1fil.

\vfill Equivalent to \vskip Ocm plus 1fill.

\vfilneg Equivalentto \vskip Ocm minus 1fil.

\vss Equivalent to \vskip Ocm plus 1fil minus 1fil.

\kern Add a kern item to the current horizontal or vertical list.
\lastkern If the last item on the current list was a kern, the size of it.
\lastskip If the last item on the current list was a glue, the size of it.
\unkern If the last item of the current list was a kern, remove it.

\unskip If the last item of the current list was a glue, remove it.
\removelastskip Macro to append the negative of the \lastskip.
\advance Arithmetic command to add to or subtract from a (numeric variable).
\multiply Arithmetic command to multiply a (numeric variable).
\divide Arithmetic command to divide a (numeric variable).

87

Chapter 8. Dimensions and Glue

8.1 Definition of (glue) and (dimen)

This section gives the syntax of the quantities (dimen) and (glue). In the next section the
practical aspects of glue are treated.

Unfortunately the terminology for glue is slightly confusing. The syntactical quantity (glue)
is a dimension (a distance) with possibly a stretch and/or shrink component. In order to add
a glob of ‘glue’ (a white space) to a list one has to let a (glue) be preceded by commands
such as \vskip.

8.1.1 Definition of dimensions

A (dimen) is what TEX expects to see when it needs to indicate a dimension; it can be
positive or negative.

(dimen) — (optional signs) (unsigned dimen)
The unsigned part of a (dimen) can be

(coerced dimen)

(unsigned dimen) — (normal dimen) |
| (factor) (unit of measure)

(normal dimen) — (internal dimen)
(coerced dimen) — (internal glue)

That is, we have the following three cases:

. an (internal dimen); this is any register or parameter of TgX that has a (dimen)
value:
(internal dimen) — (dimen parameter)
| (special dimen) | \lastkern
| (dimendef token) | \dimen(8-bit number)
| \fontdimen(number)(font)
| (box dimension)(8-bit number)
(dimen parameter) — \boxmaxdepth
| \delimitershortfall | \displayindent
| \displaywidth | \hangindent
| \hfuzz | \hoffset | \hsize
| \lineskiplimit | \mathsurround
| \maxdepth | \nulldelimiterspace
| \overfullrule | \parindent
| \predisplaysize | \scriptspace
| \splitmaxdepth | \vfuzz
| \voffset | \vsize

. a dimension denotation, consisting of (factor) (unit of measure), for example 0. 7\vsize;
or
° an (internal glue) (see below) coerced to a dimension by omitting the stretch and

shrink components, for example \parfillskip.
A dimension denotation is a somewhat complicated entity:

° a (factor) is an integer denotation, a decimal constant denotation (a number with
an integral and a fractional part), or an (internal integer)

88 Victor Eijkhout — TgX by Topic

8.1. Definition of (glue) and (dimen)

factor) — (normal integer) | (decimal constant)

normal integer) — (integer denotation)

(internal integer)

decimal constant) — .12 | ,12

(digit)(decimal constant)

| (decimal constant) (digit)
An internal integer is a parameter that is ‘really’ an integer (for instance, \count0),
and not coerced from a dimension or glue. See Chapter [7] for the definition of va-
rious kinds of integers.

. a (unit of measure) can be a (physical unit), that is, an ordinary unit such as cm
(possibly preceded by true), an internal unit such as em, but also an (internal
integer) (by conversion to scaled points), an (internal dimen), or an (internal glue).

(unit of measure) — (optional spaces) (internal unit)
| (optional true)(physical unit){one optional space)
(internal unit) — em(one optional space)

| ex(one optional space) | (internal integer)

| (internal dimen) | (internal glue)

(
(
|
(
|

Some (dimen)s are called (special dimen)s:

(special dimen) — \prevdepth

| \pagegoal | \pagetotal | \pagestretch

| \pagefilstretch | \pagefillstretch

| \pagefilllstretch | \pageshrink | \pagedepth
An assignment to any of these is called an (intimate assignment), and it is automatically
global (see Chapter[I0). The meaning of these dimensions is explained in Chapter 27] with
the exception of \prevdepth which is treated in Chapter[I5]

8.1.2 Definition of glue

A (glue) is either some form of glue variable, or a glue denotation with explicitly indicated
stretch and shrink. Specifically,

(glue) — (optional signs)(internal glue) | (dimen) (stretch) (shrink)

(internal glue) — (glue parameter) | \lastskip

| (skipdef token) | \skip(8-bit number)

(glue parameter) — \abovedisplayshortskip

| \abovedisplayskip | \baselineskip

| \belowdisplayshortskip | \belowdisplayskip

| \leftskip | \lineskip | \parfillskip | \parskip

| \rightskip | \spaceskip | \splittopskip | \tabskip

| \topskip | \xspaceskip
The stretch and shrink components in a glue denotation are optional, but when both are
specified they have to be given in sequence; they are defined as

stretch) — plus (dimen) | plus(fil dimen) | (optional spaces)
shrink) — minus (dimen) | minus(fil dimen) | (optional spaces)
fil dimen) — (optional signs)(factor)(fil unit)(optional spaces)
fil unit) — | £il | £i11 | £i111

o~ o~~~

Victor Eijkhout — TgX by Topic 89

Chapter 8. Dimensions and Glue

The actual definition of (fil unit) is recursive (see Chapter [36), but these are the only valid
possibilities.

8.1.3 Conversion of (glue) to (dimen)

The grammar rule

(dimen) — (factor)(unit of measure)
has some noteworthy consequences, caused by the fact that a (unit of measure) need not
look like a ‘unit of measure’ at all (see the list above).
For instance, from this definition we conclude that the statement
\dimenO=\lastpenalty\lastpenalty

is syntactically correct because \lastpenalty can function both as an integer and as (unit
of measure) by taking its value in scaled points. After \penalty8 the \dimenO thus defi-
ned will have a size of 64sp.

More importantly, consider the case where the (unit of measure) is an (internal glue), that
is, any sort of glue parameter. Prefixing such a glue with a number (the (factor)) makes it a
valid (dimen) specification. Thus

\skipO=\skipl
is very different from
\skip0O=1\skipl

The first statement makes \skipO equal to \skip1, the second converts the \skip1l to a
(dimen) before assigning it. In other words, the \skipO defined by the second statement
has no stretch or shrink.

8.1.4 Registers for \dimen and \skip
TEX has registers for storing (dimen) and (glue) values: the \dimen and \skip registers
respectively. These are accessible by the expressions
\dimen(number)
and
\skip(number)
As with all registers of TgX, these registers are numbered 0-255.
Synonyms for registers can be made with the \dimendef and \skipdef commands. Their
syntax is
\dimendef (control sequence)(equals)(8-bit number)
and
\skipdef (control sequence) (equals)(8-bit number)
For example, after \skipdef\foo=13 using \foo is equivalent to using \skip13.

Macros \newdimen and \newskip exist in plain TgXfor allocating an unused dimen or
skip register. These macros are defined to be \outer in the plain format.

90 Victor Eijkhout — TgX by Topic

8.1. Definition of (glue) and (dimen)

8.1.5 Arithmetic: addition

As for integer variables, arithmetic operations exist for dimen, glue, and muglue (mathe-
matical glue; see page[203)) variables.

The expressions

\advance(dimen variable) (optional by)(dimen)
\advance(glue variable){optional by)(glue)
\advance(muglue variable)(optional by) (muglue)

add to the size of a dimen, glue, or muglue.

Advancing a (glue variable) by (glue) is done by adding the natural sizes, and the stretch
and shrink components. Because TX converts between (glue) and (dimen), it is possible
to write for instance

\advance\skipl by \dimen1l
or
\advance\dimenl by \skipil

In the first case \dimen1 is coerced to (glue) without stretch or shrink; in the second case
the \skip1 is coerced to a (dimen) by taking its natural size.

8.1.6 Arithmetic: multiplication and division

Multiplication and division operations exist for glue and dimensions. One may for instance
write

\multiply\skipl by 2

which multiplies the natural size, and the stretch and shrink components of \skip1 by 2.

The second operand of a \multiply or \divide operation can only be a (number), that
is, an integer. Introducing the notion of (numeric variable):

(numeric variable) — (integer variable) | (dimen variable)
| (glue variable) | (muglue variable)

these operations take the form

\multiply(numeric variable)(optional by)(number)
and

\divide(numeric variable){optional by) (number)

Glue and dimen can be multiplied by non-integer quantities:

\skip1=2.5\skip2
\dimeni=.78\dimen2

However, in the first line the \skip2 is first coerced to a (dimen) value by omitting its
stretch and shrink.

Victor Eijkhout — TgX by Topic 91

Chapter 8. Dimensions and Glue

8.2 More about dimensions
8.2.1 Units of measurement

In TgX dimensions can be indicated in

centimetre denoted cm or

millimetre denoted mm; these are SI units (Systeme International d’Unités, the internatio-
nal system of standard units of measurements).

inch in; more common in the Anglo-American world. One inch is 2.54 centimetres.

pica denoted pc; one pica is 12 points.

point denoted pt; the common system for Anglo-American printers. One inch is 72.27
points.

didot point denoted dd; the common system for continental European printers. Further-
more, 1157 didot points are 1238 points.

cicero denoted cc; one cicero is 12 didot points.

big point denoted bp; one inch is 72 big points.

scaled point denoted sp; this is the smallest unit in TgX, and all measurements are integral
multiples of one scaled point. There are 65 536 scaled points in a point.

Decimal fractions can be written using both the Anglo-American system with the decimal
point (for example, 1in=72.27pt) and the continental European system with a decimal
comma; 1in=72,27pt.

Internally TgX works with multiples of a smallest dimension: the scaled point. Dimensions
larger (in absolute value) than 239 — 1sp, which is about 5.75 metres or 18.9 feet, are illegal.

Both the pica system and the didot system are of French origin: in 1737 the type founder
Pierre Simon Fournier introduced typographical points based on the French foot. Although
at first he introduced a system based on lines and points, he later took the point as unit:
there are 72 points in an inch, which is one-twelfth of a foot. About 1770 another foun-
der, Francois Ambroise Didot, introduced points based on the more common, and slightly
longer, ‘pied du roi’.

8.2.2 Dimension testing

Dimensions and natural sizes of glue can be compared with the \ifdim test. This takes the
form

\ifdim(dimen;)(relation)(dimens)

where the relation can be an >, <, or = token, all of category 12.

8.2.3 Defined dimensions

\z@ Opt
\maxdimen 16383.99999pt; the largest legal dimension.
These (dimen)s are predefined in the plain format; for instance

\newdimen\z@ \z@=0Opt

92 Victor Eijkhout — TgX by Topic

8.3. More about glue

Using such abbreviations for commonly used dimensions has at least two advantages. First
of all it saves main memory if such a dimension occurs in a macro: a control sequence is
one token, whereas a string such as Opt takes three. Secondly, it saves time in processing,
as TgX does not need to perform conversions to arrive at the correct type of object.

Control sequences such as \z@ are only available to a user who changes the category code
of the ‘at’ sign. Ordinarily, these control sequences appear only in the macros defined in
packages such as the plain format.

8.3 More about glue

Glue items can be added to a vertical list with one of the commands \vskip(glue), \vfil,
\v£fill, \vss or \vfilneg; glue items can be added to a horizontal list with one of the
commands \hskip(glue), \hfil, \hfill, \hss or \hfilneg. We will now treat the pro-
perties of glue.

8.3.1 Stretch and shrink

In the syntax given above, (glue) was defined as having

° a ‘natural size’, which is a (dimen), and optionally
. a ‘stretch’ and ‘shrink” component built out of a (fil dimen).

Each list that TgX builds has amounts of stretch and shrink (possibly zero), which are the
sum of the stretch and shrink components of individual pieces of glue in the list. Stretch
and shrink are used if the context in which the list appears requires it to assume a size that
is different from its natural size.

There is an important difference in behaviour between stretch and shrink components when
they are finite — that is, when the (fildimen) is not £i1(1(1)). A finite amount of shrink is
indeed the maximum shrink that TgX will take: the amount of glue specified as

5pt minus 3pt
can shrink to 2pt, but not further. In contrast to this, a finite amount of stretch can be

stretched arbitrarily far. Such arbitrary stretching has a large ‘badness’, however. Badness
calculation is treated below.

The sequence with natural size 20pt

\hskip 10pt plus 2pt \hskip 10pt plus 3pt

has 5pt of stretch, but it has no shrink. In

\hskip 10pt minus 2pt \hskip 10pt plus 3pt

there is 3pt of stretch, and 2pt of shrink, so its minimal size is 18pt.
Positive shrink is not the same as negative stretch:

\hskip 10pt plus -2pt \hskip 10pt plus 3pt

looks a lot like the previous example, but it cannot be shrunk as there are
no minus(dimen) specifications. It does have 1pt of stretch, however.
This is another example of negative amounts of shrink and stretch. It is
not possible to stretch glue (in the informal sense) by shrinking it (in the
technical sense):

Victor Eijkhout — TgX by Topic 93

Chapter 8. Dimensions and Glue

\hbox to 5cm{a\hskip Ocm minus -1fil}

is an underfull box, because TX looks for a plus (dimen) specification
when it needs to stretch the contents.

Finally,

\hskip 10pt plus -3pt \hskip 10pt plus 3pt

can neither stretch nor shrink. The fact that there is only stretch available
means that the sequence cannot shrink. However, the stretch components
cancel out: the total stretch is zero. Another way of looking at this is to
consider that for each point that the second glue item would stretch, the
first one would ‘stretch back’ one point.

Any amount of infinite stretch or shrink overpowers all finite stretch or shrink available:

\hbox to 5cm{\hskip Ocm plus 16384pt
text\hskip Ocm plus 0.0001fil}

has the text at the extreme left of the box. There are three orders of ‘infinity’, each one
infinitely stronger than the previous one:

\hbox to 5cm{\hskip Ocm plus 16384fil
text\hskip Ocm plus 0.0001fill}

and

\hbox to 5cm{\hskip Ocm plus 16384fill
text\hskip Ocm plus 0.0001filll}

both have the text at the left end of the box.

8.3.2 Glue setting

In the process of ‘glue setting’, the desired width (or height) of a box is compared with the
natural dimension of its contents, which is the sum of all natural dimensions of boxes and
globs of glue. If the two differ, any available stretchability or shrinkability is used to bridge
the gap. To attain the desired dimension of the box only the glue of the highest available
order is set: each piece of glue of that order is stretched or shrunk by the same ratio.

For example, in
\hbox to 6pt{\hskip Opt plus 3pt \hskip Opt plus 9pt}

the natural size of the box is Opt, and the total stretch is 12pt. In order to obtain a box
of 6pt each glue item is set with a stretch ratio of 1/2. Thus the result is equivalent to

\hbox {\hskip 1.5pt \hskip 4.5pt}

Only the highest order of stretch or shrink is used: in

\hbox to 6pt{\hskip Opt plus 1fil \hskip Opt plus 9pt}

the second glue will assume its natural size of Opt, and only the first glue will be stretched.
TeX will never exceed the maximum value of a finite amount of shrink. A box that cannot
be shrunk enough is called ‘overfull’. Finite stretchability can be exceeded to provide an

escape in difficult situations; however, TgX is likely to give an Underfull \hbox message
about this (see page[63). For an example of infinite shrink see page [65]

94 Victor Eijkhout — TgX by Topic

8.3. More about glue

8.3.3 Badness

When stretching or shrinking a list TgX calculates badness based on the ratio between actual
stretch and the amount of stretch present in the line. See Chapter [I9] for the application of
badness to the paragraph algorithm.

The formula for badness of a list that is stretched (shrunk) is

actual amount stretched (shrunk))3>

b = min | 10000, 100
fmn (’ x <p0ssible amount of stretch (shrink)

In reality TEX uses a slightly different formula that is easier to calculate, but behaves the
same. Since glue setting is one of the main activities of TgX, this must be performed as
efficiently as possible.

This formula lets the badness be a reasonably small number if the glue set ratio (the fraction
in the above expression) is reasonably small, but will let it grow rapidly once the ratio is
more than 1. Badness is infinite if the glue would have to shrink more than the allotted
amount; stretching glue beyond its maximum is possible, so this provides an escape for
very difficult lines of text or pages.

In TEX3, the \badness parameter records the badness of the most recently formed box.

8.34 Glue and breaking

TgX can break lines and pages in several kinds of places. One of these places is before a
glue item. The glue is then discarded. For line breaks this is treated in Chapter[I9] for page
breaks see Chapter 27}

There are two macros in plain TgX, \hglue and \vglue, that give non-disappearing glue
in horizontal and vertical mode respectively. For the horizontal case this is accomplished
by placing:

\vrule width Opt \nobreak \hskip ...

Because TgX breaks at the front end of glue, this glue will always stay attached to the
rule, and will therefore never disappear. The actual macro definitions are somewhat more
complicated, because they take care to preserve the \spacefactor and the \prevdepth.

8.3.5 \kern

The \kern command specifies a kern item in whatever mode TgX is currently in. A kern
item is much like a glue item without stretch or shrink. It differs from glue in that it is in
general not a legal breakpoint. Thus in

. text .. \hbox{a}\kernOpt\hbox{b}
TgX will not break lines in between the boxes; in
. text .. \hbox{a}\hskipOpt\hbox{b}

a line can be broken in between the boxes.

However, if a kern is followed by glue, TgX can break at the kern (provided that it is not
in math mode). In horizontal mode both the kern and the glue then disappear in the break.

Victor Eijkhout — TgX by Topic 95

Chapter 8. Dimensions and Glue

In vertical mode they are discarded when they are moved to the (empty) current page after
the material before the break has been disposed of by the output routine (see Chapter [27).

8.3.6 Glue and modes

All horizontal skip commands are (horizontal command)s and all vertical skip commands
are (vertical commands)s. This means that, for instance, an \hskip command makes TX
start a paragraph if it is given in vertical mode. The \kern command can be given in both
modes.

8.3.7 The last glue item in a list: backspacing

The last glue item in a list can be measured, and it can be removed in all modes but external
vertical mode. The internal variables \lastskip and \lastkern can be used to measure
the last glob of glue in all modes; if the last glue was not a skip or kern respectively they
give Opt. In math mode the \lastskip functions as (internal muglue), but in general it
classifies as (internal glue). The \lastskip and \lastkern are also Opt if that was the
size of the last glue or kern item on the list.

The operations \unskip and \unkern remove the last item of a list, if this is a glue or kern
respectively. They have no effect in external vertical mode; in that case the best substitute
is \vskip-\lastskip and \kern-\lastkern.

In the process of paragraph building TgX itself performs an important \unskip: a para-
graph ending with a white line will have a space token inserted by TgX’s input processor.
This is removed by an \unskip before the \parfillskip glue (see Chapter[I7) is inser-
ted.

Glue is treated by TgX as a special case of leaders, which becomes apparent when \unskip
is applied to leaders: they are removed.

8.3.8 Examples of backspacing

The plain TgX macro \removelastskip is defined as
\ifdim\lastskip=0Opt \else \vskip-\lastskip \fi

If the last item on the list was a glue, this macro will backspace by its value, provided its
natural size was not zero. In all other cases, nothing is added to the list.

Sometimes an intelligent version of commands such as \vskip is necessary, in the sense
that two subsequent skip commands should result only in the larger of the two glue amounts.
On page[T64]such a macro is used:

\newskip\tempskipa
\def\vspace#1{\tempskipa=#1\relax
\ifvmode \ifdim\tempskipa<\lastskip
\else \vskip-\lastskip \vskip\tempskipa
\fi
\else \vskip\tempskipa \fi}

96 Victor Eijkhout — TgX by Topic

8.3. More about glue

First of all, this tests whether the mode is vertical; if not, the argument can safely be placed.
Copying the argument into a skip register is necessary because \vspace{2pt plus 3pt}
would lead to problems in an \ifdim#1<\lastskip test.

If the surrounding mode was vertical, the argument should only be placed if it is not less
than what is already there. The macro would be incorrect if the test read

\ifdim\tempskipa>\lastskip
\vskip-\lastskip \vskip\tempskipa
\fi
In this case the sequence
. last word.\par \vspace{Opt plus 1fil}

would not place any glue, because after the \par we are in vertical mode and \lastskip
has a value of Opt.

8.3.9 Glue in trace output

If the workings of TgX are traced by setting \tracingoutput positive, or if TgX writes a
box to the log file (because of a \showbox command, or because it is overfull or underfull),
glue is denoted by the control sequence \glue. This is not a TgX command; it merely
indicates the presence of glue in the current list.

The box representation that TgX generated from, for instance, \showbox inserts a space
after every explicit \kern, but no space is inserted after an implicit kern that was inserted
by the kerning information in the font tfm file. Thus \kern 2.0pt denotes a kern that was
inserted by the user or by a macro, and \kern2.Opt denotes an implicit kern.

Glue that is inserted automatically (\topskip, \baselineskip, et cetera) is denoted by
name in TgX’s trace output. For example, the box
\vbox{\hbox{Vo}\hbox{b}}

looks like

\vbox (18.83331+0.0)x11.66669
.\hbox(6.83331+0.0)x11.66669

..\tenrm V

. .\kern-0.83334

..\tenrm o

.\glue(\baselineskip) 5.05556

.\hbox (6.94444+0.0)x5.55557

..\tenrm b

Note the implicit kern inserted between ‘V’ and ‘0’.

Victor Eijkhout — TgX by Topic 97

Chapter 9

Rules and Leaders

Rules and leaders are two ways of getting TgX to draw a line. Leaders are more general than
rules: they can also fill available space with copies of a certain box. This chapter explain
how rules and leaders work, and how they interact with modes.

\hrule Rule that spreads in horizontal direction.

\vrule Rule that spreads in vertical direction.

\leaders Fill a specified amount of space with a rule or copies of box.

\cleaders Like \leaders, but with box leaders any excess space is split equally before
and after the leaders.

\xleaders Like \leaders, but with box leaders any excess space is spread equally be-
fore, after, and between the boxes.

9.1 Rules

TEX’s rule commands give rectangular black patches with horizontal and vertical sides.
Most of the times, a rule command will give output that looks like a rule, but B can also be
produced by a rule.

TEX has both horizontal and vertical rules, but the names do not necessarily imply anything
about the shape. They do, however, imply something about modes: an \hrule command
can only be used in vertical mode, and a \vrule only in horizontal mode. In fact, an
\hrule is a (vertical command), and a \vrule is a (horizontal command), so TgX may
change modes when encountering these commands.

Why then is a \vrule called a vertical rule? The reason is that a \vrule can expand
arbitrarily far in the vertical direction: if its height and depth are not specified explicitly it
will take as much room as its surroundings allow.

\hbox{\vrule\ text \vrule}

looks like

[text|
and
\hbox{\vrule\ A gogo! \vrule}

98

9.2. Leaders

looks like
| A gogo!|
For the \hrule command a similar statement is true: a horizontal rule can spread to assume
the width of its surroundings. Thus
\vbox{\hbox{One line of text}\hrule}
looks like

ne line of tex

9.1.1 Rule dimensions

Horizontal and vertical rules have a default thickness:
\hrule isthesame as \hrule height.4pt depthOpt
and
\vrule isthesameas \vrule width.4pt
and if the remaining dimension remains unspecified, the rule extends in that direction to fill
the enclosing box.
Here is the formal specification of how to indicate rule sizes:

(vertical rule) — \vrule(rule specification)

(horizontal rule) — \hrule(rule specification)

(rule specification) — (optional spaces)

| (rule dimensions)(rule specification)

(rule dimension) — width(dimen) | height(dimen) | depth(dimen)

If a rule dimension is specified twice, the second instance takes precedence over the first.
This makes it possible to override the default dimensions. For instance, after

\let\xhrule\hrule \def\hrule{\xhrule height .8pt}

the macro \hrule gives a horizontal rule of double the original height, and it is still possi-
ble with

\hrule height 2pt

to specify other heights.

It is possible to specify all three dimensions; then
\vrule heightlex depthOpt widthlex
and

\hrule heightlex depthOpt widthlex

look the same. Still, each of them can be used only in the appropriate mode.

9.2 Leaders

Rules are intimately connected to modes, which makes it easy to obtain some effects. For
instance, a typical application of a vertical rule looks like

Victor Eijkhout — TgX by Topic 99

Chapter 9. Rules and Leaders

\hbox{\vrule widthipt\ Important text! \vrule width 1pt}
which gives
| Important text! |

However, one might want to have a horizontal rule in horizontal mode for effects such as
— Scm —

from here. to there

An \hrule can not be used in horizontal mode, and a vertical rule will not spread automa-
tically.

However, there is a way to use an \hrule command in horizontal mode and a \vrule in
vertical mode, and that is with ‘leaders’, so called because they lead your eye across the
page. A leader command tells TgX to fill a specified space, in whatever mode it is in, with
as many copies of some box or rule specification as are needed. For instance, the above
example was given as

\hbox to 5cm{from here\leaders\hrule\hfil to there}
that is, with an \hrule that was allowed to stretch along an \hfil. Note that the leader
was given a horizontal skip, corresponding to the horizontal mode in which it appeared.
A general leader command looks like

(leaders) (box or rule)(vertical/horizontal/mathematical skip)

where (leaders) is \leaders, \cleaders, or \xleaders, a (box or rule) is a (box),
\vrule, or \hrule, and the lists of horizontal and vertical skips appear in Chapter [6}
a mathematical skip is either a horizontal skip or an \mskip (see page [205)). Leaders can
thus be used in all three modes. Of course, the appropriate kind of skip must be specified.

A horizontal (vertical) box containing leaders has at least the height and depth (width) of
the (box or rule) used in the leaders, even if, as can happen in the case of box leaders, no
actual leaders are placed.

9.2.1 Rule leaders

Rule leaders fill the specified amount of space with a rule extending in the direction of the
skip specified. The other dimensions of the resulting rule leader are determined by the sort
of rule that is used: either dimensions can be specified explicitly, or the default values can
be used.
For instance,
\hbox{g\leaders\hrule\hskip20pt £}
gives

g f
because a horizontal rule has a default height of .4pt. On the other hand,
\hbox{g\leaders\vrule\hskip20pt £}
gives

eIt

100 Victor Eijkhout — TgX by Topic

9.2. Leaders

because the height and depth of a vertical rule by default fill the surrounding box.

Spurious rule dimensions are ignored: in horizontal mode
\leaders\hrule width 10pt \hskip 20pt

is equivalent to

\leaders\hrule \hskip 20pt

If the width or height-plus-depth of either the skip or the box is negative, TgX uses ordinary
glue instead of leaders.

9.2.2 Boxleaders
Box leaders fill the available spaces with copies of a given box, instead of with a rule.

For all of the following examples, assume that a box register has been allocated:
\newbox\centerdot \setbox\centerdot=\hbox{\hskip.7em.\hskip.7em}
Now the output of
\hbox to 8cm {here\leaders\copy\centerdot\hfil there}
is
he,e there
That is, copies of the box register fill up the available space.
Dot leaders, as in the above example, are often used for tables of contents. In such appli-

cations it is desirable that dots on subsequent lines are vertically aligned. The \leaders
command does this automatically:
\hbox to 8cm {here\leaders\copy\centerdot\hfil there}
\hbox to 8cm {over here\leaders\copy\centerdot\hfil over there}
gives
here there
over here overthere

The mechanism behind this is the following: TgX acts as if an infinite row of boxes starts
(invisibly) at the left edge of the surrounding box, and the row of copies actually placed is
merely the part of this row that is not obscured by the other contents of the box.

Stated differently, box leaders are a window on an infinite row of boxes, and the row starts
at the left edge of the surrounding box. Consider the following example:

\hbox to 8cm {\leaders\copy\centerdot\hfil}
\hbox to 8cm {word\leaders\copy\centerdot\hfil}

which gives

word L
The row of leaders boxes becomes visible as soon as it does not coincide with other mate-
rial.

The above discussion only talked about leaders in horizontal mode. Leaders can equally
well be placed in vertical mode; for box leaders the ‘infinite row’ then starts at the top of
the surrounding box.

Victor Eijkhout — TgX by Topic 101

Chapter 9. Rules and Leaders

9.2.3 Evenly spaced leaders

Aligning subsequent box leaders in the way described above means that the white space
before and after the leaders will in general be different. If vertical alignment is not an issue
it may be aesthetically more pleasing to have the leaders evenly spaced. The \cleaders
command is like \leaders, except that it splits excess space before and after the leaders
into two equal parts, centring the row of boxes in the available space.

\hbox to 7.8cm {here\cleaders\copy\centerdot\hfil there}
\hbox to 7.8cm {here is\cleaders\copy\centerdot\hfil there}
gives

here there

hereis there
The ‘expanding leaders’ \xleaders spread excess space evenly between
the boxes, with equal globs of glue before, after, and in between leader
boxes.

\hbox to 7.8cm{here\hskip.7em
\xleaders\copy\centerdot\hfil \hskip.7em there}

gives

here there
Note that the glue in the leader box is balanced here with explicit glue
before and after the leaders; leaving out these glue items, as in
\hbox to 7.8cm {here\xleaders\copy\centerdot\hfil there}
gives

here there
which is clearly not what was intended.

9.3 Assorted remarks
9.3.1 Rules and modes

Above it was explained how rules can only occur in the appropriate modes. Rules also in-
fluence mode-specific quantities: no baselineskip is added before rules in vertical mode. In
order to prevent glue after rules, TgX sets \prevdepth to ~1000pt (see Chapter[I3)). Simi-
larly the \spacefactor is set to 1000 after a \vrule in horizontal mode (see Chapter|[T9).

9.3.2 Ending a paragraph with leaders

An attempt to simulate an \hrule at the end of a paragraph by
\nobreak\leaders\hrule\hfill\par

does not work. The reason for this is that TgX performs an \unskip at the end of a para-
graph, which removes the leaders. Normally this \unskip removes any space token inser-
ted by the input processor after the last line. Remedy: stick an \hbox{} at the end of the
leaders.

102 Victor Eijkhout — TgX by Topic

9.3. Assorted remarks

9.3.3 Leaders and box registers

In the above examples the leader box was inserted with \copy. The output of

\hbox to 8cm {here\leaders\box\centerdot\hfil there}
\hbox to 8cm {over here\leaders\box\centerdot\hfil
over there}

is

here there

over here over there
The box register is emptied after the first leader command, but more than one copy is placed
in that first command.

9.3.4 OQOutput in leader boxes

Any \write, \openout, or \closeout operation appearing in leader boxes is ignored.
Otherwise such an operation would be executed once for every copy of the box that would
be shipped out.

9.3.5 Box leaders in trace output

The dumped box representation obtained from, for instance, \tracingoutput does not
write out box leaders in full: only the total size and one copy of the box used are dumped.
In particular, the surrounding white space before and after the leaders is not indicated.

9.3.6 Leaders and shifted margins

If margins have been shifted, leaders may look different depending on how the shift has
been realized. For an illustration of how \hangindent and \1leftskip influence the look
of leaders, consider the following examples, where

\setbox0=\hbox{K o }

The horizontal boxes above the leaders serve to indicate the starting point of the row of
leaders.

First

\hbox{\leaders\copyO\hskip5cm}
\noindent\advance\leftskip lem
\leaders\copyO\hskip5cm\hbox{}\par
gives
KoKoKoKoKoKoKoKo
KoKoKoKoKoKoKo
Then
\hbox{\kernlem\hbox{\leaders\copyO\hskip5cm}}
\hangindent=1em \hangafter=-1 \noindent
\leaders\copyO\hskip5cm\hbox{}\par

gives (note the shift with respect to the previous example)

Victor Eijkhout — TgX by Topic 103

Chapter 9. Rules and Leaders

KoKoKoKoKoKoKoKo
KoKoKoKoKoKoKoKo

In the first paragraph the \leftskip glue only obscures the first leader box; in the second
paragraph the hanging indentation actually shifts the orientation point for the row of lea-
ders. Hanging indentation is performed in TgX by a \moveright of the boxes containing
the lines of the paragraph.

104 Victor Eijkhout — TgX by Topic

Chapter 10

Grouping

TgX has a grouping mechanism that is able to confine most changes to a particular locality.
This chapter explains what sort of actions can be local, and how groups are formed.
\bgroup Implicit beginning of group character.

\egroup Implicit end of group character.

\begingroup Open a group that must be closed with \endgroup.

\endgroup Close a group that was opened with \begingroup.

\aftergroup Save the next token for insertion after the current group ends.

\global Make assignments, macro definitions, and arithmetic global.

\globaldefs Parameter for overriding \global prefixes. IniTgX default: 0.

10.1 The grouping mechanism

A group is a sequence of tokens starting with a ‘beginning of group’ token, and ending with
an ‘end of group’ token, and in which all such tokens are properly balanced.

The grouping mechanism of TEX is not the same as the block structure of ordinary pro-
gramming languages. Most languages with block structure are only able to have local defi-
nitions. TEX’s grouping mechanism is stronger: most assignments made inside a group are
local to that group unless explicitly indicated otherwise, and outside the group old values
are restored.

An example of local definitions

{\def\a{b}}\a

gives an ‘undefined control sequence’ message because \a is only defined inside the group.
Similarly, the code

\count0=1 {\count0=2 } \showthe\countO
will display the value 1; the assignment made inside the group is undone at the end of the
group.

Bookkeeping of values that are to be restored outside the group is done through the me-
chanism of the ‘save stack’. Overflow of the save stack is treated in Chapter [35] The save

105

Chapter 10. Grouping

stack is also used for a few other purposes: in calls such as \hbox to 100pt{...} the
specification to 100pt is put on the save stack before a new level of grouping is opened.

In order to prevent a lot of trouble with the save stack, IniTgX does not allow dumping a
format inside a group. The \end command is allowed to occur inside a group, but TgX will
give a diagnostic message about this.

The \aftergroup control sequence saves a token for insertion after the current group.
Several tokens can be set aside by this command, and they are inserted in the left-to-right
order in which they were stated. This is treated in Chapter[12]

10.2 Local and global assignments

An assignment or macro definition is usually made global by prefixing it with \global, but
non-zero values of the (integer parameter) \globaldefs override \global specifications:
if \globaldefs is positive every assignment is implicitly prefixed with \global, and if
\globaldefs is negative, \global is ignored. Ordinarily this parameter is zero.

Some a