
Package ‘tensorEVD’
May 30, 2024

Title A Fast Algorithm to Factorize High-Dimensional Tensor Product
Matrices

Version 0.1.3

Date 2024-05-28

Description Here we provide tools for the computation and factorization of high-dimensional
tensor products that are formed by smaller matrices. The methods are based on
properties of Kronecker products (Searle 1982, p. 265, ISBN-10: 0470009616).
We evaluated this methodology by benchmark testing and illustrated its use in
Gaussian Linear Models ('Lopez-Cruz et al., 2024') <doi:10.1093/g3journal/jkae001>.

URL https://github.com/MarcooLopez/tensorEVD

LazyLoad true

Depends R (>= 3.6.0)

Suggests knitr, rmarkdown, ggplot2, ggnewscale, reshape2,
RColorBrewer, pryr

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

License GPL-3

NeedsCompilation yes

Author Marco Lopez-Cruz [aut, cre],
Gustavo de los Campos [aut],
Paulino Perez-Rodriguez [aut]

Maintainer Marco Lopez-Cruz <maraloc@gmail.com>

Repository CRAN

Date/Publication 2024-05-30 07:10:02 UTC

R topics documented:
Hadamard product . 2
Kronecker product . 4
Multivariate variance matrix . 6
Tensor EVD . 10

1

https://doi.org/10.1093/g3journal/jkae001
https://github.com/MarcooLopez/tensorEVD

2 Hadamard product

Index 14

Hadamard product Hadamard product

Description

Computes the Hadamard product between two matrices

Usage

Hadamard(A, B, IDrowA, IDrowB,
IDcolA = NULL, IDcolB = NULL,
make.dimnames = FALSE,
drop = TRUE, inplace = FALSE)

Arguments

A (numeric) Left numeric matrix

B (numeric) Right numeric matrix

IDrowA (integer/character) Vector of lengthmwith either indices or row names mapping
from rows of A into the resulting hadamard product. If ’missing’, it is assumed
to be equal to 1,...,nrow(A)

IDrowB (integer/character) Vector of lengthmwith either indices or row names mapping
from rows of B into the resulting hadamard product. If ’missing’, it is assumed
to be equal to 1,...,nrow(B)

IDcolA (integer/character) (Optional) Similar to IDrowA, vector of length n for columns.
If NULL, it is assumed to be equal to IDrowA if m = n

IDcolB (integer/character) (Optional) Similar to IDrowB, vector of length n for columns.
If NULL, it is assumed to be equal to IDrowB if m = n

drop Either TRUE or FALSE to whether return a uni-dimensional vector when output is
a matrix with either 1 row or 1 column as per the rows and cols arguments

make.dimnames TRUE or FALSE to whether add rownames and colnames attributes to the output

inplace TRUE or FALSE to whether operate directly on one input matrix (A or B) when this
is used as is (i.e., is not indexed; therefore, needs to be of appropiate dimensions)
in the Hadamard. When TRUE the output will be overwritten on the same address
occupied by the non-indexed matrix. Default inplace=FALSE

Details

Computes the m× n Hadamard product (aka element-wise or entry-wise product) matrix between
matrices A and B,

(R1AC′
1)� (R2BC′

2)

Hadamard product 3

where R1 and R2 are incidence matrices mapping from rows of the resulting Hadamard to rows of A
and B, respectively; and C1 and C2 are incidence matrices mapping from columns of the resulting
Hadamard to columns of A and B, respectively.

Matrix R1AC′
1 can be obtained by matrix indexing as A[IDrowA,IDcolA], where IDrowA and

IDcolA are integer vectors whose entries are, respectively, the row and column number of A that
are mapped at each row of R1 and C1, respectively. Likewise, matrix R2BC′

2 can be obtained as
B[IDrowB,IDcolB], where IDrowB and IDcolB are integer vectors whose entries are, respectively,
the row and column number of B that are mapped at each row of R2 and C2, respectively. Therefore,
the Hadamard product can be obtained directly as

A[IDrowA,IDcolA]*B[IDrowB,IDcolB]

The function computes the Hadamard product directly from A and B without forming R1AC′
1 or

R2BC′
2 matrices.

Value

Returns a matrix containing the Hadamard product.

Examples

require(tensorEVD)

(a) Example 1. Indexing using row/column names
Generate rectangular matrices A (nrowA x ncolA) and B (nrowB x ncolB)
nA = c(10,15)
nB = c(12,8)
A = matrix(rnorm(nA[1]*nA[2]), nrow=nA[1])
B = matrix(rnorm(nB[1]*nB[2]), nrow=nB[1])
dimnames(A) = list(paste0("row",seq(nA[1])), paste0("col",seq(nA[2])))
dimnames(B) = list(paste0("row",seq(nB[1])), paste0("col",seq(nB[2])))

Define IDs for a Hadamard of size n1 x n2
n = c(1000,500)
IDrowA = sample(rownames(A), n[1], replace=TRUE)
IDrowB = sample(rownames(B), n[1], replace=TRUE)
IDcolA = sample(colnames(A), n[2], replace=TRUE)
IDcolB = sample(colnames(B), n[2], replace=TRUE)

K1 = Hadamard(A, B, IDrowA, IDrowB, IDcolA, IDcolB, make.dimnames=TRUE)

(it must equal to:)
K2 = A[IDrowA,IDcolA]*B[IDrowB,IDcolB]
dimnames(K2) = list(paste0(IDrowA,":",IDrowB), paste0(IDcolA,":",IDcolB))
all.equal(K1,K2)

(b) Example 2. Indexing using integers
Generate squared symmetric matrices A and B
nA = 20
nB = 15
A = tcrossprod(matrix(rnorm(nA*nA), nrow=nA))

4 Kronecker product

B = tcrossprod(matrix(rnorm(nB*nB), nrow=nB))

Define IDs for a Hadamard of size n x n
n = 1000
IDA = sample(seq(nA), n, replace=TRUE)
IDB = sample(seq(nB), n, replace=TRUE)

K1 = Hadamard(A, B, IDA, IDB)

(it must equal to:)
K2 = A[IDA,IDA]*B[IDB,IDB]
all.equal(K1,K2)

(c) Inplace calculation
overwrite the output at the same address as the input:
IDB = sample(seq(nB), nA, replace=TRUE)

K1 = A[] # copy of A to be used as input
add = pryr::address(K1) # address of K on entry
K1 = Hadamard(K1, B, IDrowB=IDB)
pryr::address(K1) == add # on exit, K was moved to a different address

K2 = A[]
add = pryr::address(K2)
K2 = Hadamard(K2, B, IDrowB=IDB, inplace=TRUE)
pryr::address(K2) == add # on exit, K remains at the same address
all.equal(K1,K2)

Kronecker product Kronecker product

Description

Computes the direct Kronecker product between two matrices

Usage

Kronecker(A, B, rows = NULL, cols = NULL,
make.dimnames = FALSE, drop = TRUE,
inplace = FALSE)

Arguments

A (numeric) Left numeric matrix

B (numeric) Right numeric matrix

rows (integer) Index which rows of the Kronecker are to be returned. They must range
from 1 to nrow(A)*nrow(B). Default rows=NULL will return all the rows

Kronecker product 5

cols (integer) Index which columns of the Kronecker are to be returned. They must
range from 1 to ncol(A)*ncol(B). Default cols=NULL return all the columns

drop Either TRUE or FALSE to whether return a uni-dimensional vector when output is
a matrix with either 1 row or 1 column as per the rows and cols arguments

make.dimnames TRUE or FALSE to whether add rownames and colnames attributes to the output

inplace TRUE or FALSE to whether operate directly on one input matrix (A or B) when
the other one is a scalar. This is possible only when rows=NULL and cols=NULL.
When TRUE the output will be overwritten on the same address occupied by the
input that is not scalar. Default inplace=FALSE

Details

For any two matrices A = {aij} of dimensions m × n and B = {bij} of dimensions p × q, the
direct Kronecker product between them is a matrix defined as the block matrix

A⊗ B = {aijB}

which is of dimensions mp× nq.

A sub-matrix formed by selecting specific rows and columns from the Kronecker can be obtained
by pre- and post- multiplication with incidence matrices

R(A⊗ B)C′

where R is an incidence matrix mapping from rows of the resulting sub-matrix to rows of the
Kronecker product, and C is an incidence matrix mapping from columns of the resulting sub-matrix
to columns of the Kronecker product. This sub-matrix of the Kronecker can be obtained by matrix
indexing as

Kronecker(A,B)[rows,cols]

where rows and cols are integer vectors whose entries are, respectively, the row and column num-
ber of the Kronecker that are mapped at each row of R and C.

The function computes this sub-matrix of the Kronecker product directly from A and B with-
out forming the whole Kronecker product. This is very useful if a relatively small number of
row/columns are to be selected.

Value

Returns the Kronecker product matrix. It can be a sub-matrix of it as per the rows and cols argu-
ments.

Examples

require(tensorEVD)

(a) Kronecker product of 2 vectors
A = rnorm(3)
B = rnorm(2)

6 Multivariate variance matrix

(K1 = Kronecker(A, B))
it must equal when using from the R-base package:
(K2 = kronecker(A, B))

(b) Kronecker product of 2 matrices
A = matrix(rnorm(12), ncol=3)
B = matrix(rnorm(4), ncol=2)
K1 = Kronecker(A, B)
(it must equal (but faster) to:)
K2 = kronecker(A, B)
all.equal(K1,K2)

(c) Subsetting rows/columns from the Kronecker
A = matrix(rnorm(100*150), ncol=150)
B = matrix(rnorm(100*120), ncol=120)
rows = c(1,3,5,7)
cols = c(10,20,30,50)
K1 = Kronecker(A, B, rows=rows, cols=cols)
(it must equal (but faster) to:)
K2 = Kronecker(A, B)[rows,cols]
all.equal(K1,K2)

(d) Inplace calculation
overwrite the output at the same address as the input:
K1 = A[] # copy of A to be used as input
add = pryr::address(K1) # address of K on entry
K1 = Kronecker(K1, B=0.5)
pryr::address(K1) == add # on exit, K was moved to a different address

K2 = A[]
add = pryr::address(K2)
K2 = Kronecker(K2, B=0.5, inplace=TRUE)
pryr::address(K2) == add # on exit, K remains at the same address
all.equal(K1,K2)

Multivariate variance matrix

Multivariate variance matrix penalization

Description

Ridge penalization of a multi-variate (co)variance matrix taking the form of either a Kronecker or
Hadamard product

Usage

Kronecker_cov(Sigma = 1, K, Theta, swap = FALSE,
rows = NULL, cols = NULL,
drop = TRUE, inplace = FALSE)

Multivariate variance matrix 7

Hadamard_cov(Sigma = 1, K, Theta, IDS, IDK,
drop = TRUE, inplace = FALSE)

Arguments

Sigma (numeric) A variance matrix among features. If is scalar, a scaled identity matrix
with the same dimension as Theta is used

K (numeric) Variance matrix among subjects

Theta (numeric) A diagonal-shifting parameter, value to be added to the diagonals of
the resulting (co)variance matrix. It should be a (symmetric) matrix with the
same dimension as Sigma

rows (integer) Index which rows of the (Kronecker product) (co)variance matrix are
to be returned. Default rows=NULL will return all the rows

cols (integer) Index which columns of the (Kronecker product) (co)variance are to
be returned. Default cols=NULL return all the columns

IDS (integer/character) Vector with either indices or row names mapping from rows/columns
of Sigma and Theta into the resulting (Hadamard product) (co)variance matrix

IDK (integer/character) Vector with either indices or row names mapping from rows/columns
of K into the resulting (Hadamard product) (co)variance matrix

swap (logical) Either TRUE or FALSE (default) to whether swap the order of the matri-
ces in the resulting (Kronecker product) (co)variance matrix

drop (logical) Either TRUE or FALSE to whether return a uni-dimensional vector when
output is a matrix with either 1 row or 1 column as per the rows and cols
arguments

inplace (logical) Either TRUE or FALSE to whether operate directly on matrix K when
Sigma and Theta are scalars. This is possible only when rows=NULL and cols=NULL.
When TRUE the output will be overwritten on the same address occupied by K.
Default inplace=FALSE

Details

Assume that a multi-variate random matrix X with n subjects in rows and p features in columns
follows a matrix Gaussian distribution with certain matrix of means M and variance matrix K of
dimension n× n between subjects, and Σ of dimension p× p between features.

Kronecker product form.
The random variable x = vec(X), formed by stacking columns of X, is a vector of length np that
also follow a Gaussian distribution with mean vec(M) and (co)variance covariance matrix taking
the Kronecker form

Σ⊗K

In the uni-variate case, the problem of near-singularity can be alleviated by penalizing the variance
matrix K by adding positive elements θ to its diagonal, i.e., K + θI, where I is an identity matrix.

8 Multivariate variance matrix

The same can be applied to the multi-variate case where the Kronecker product (co)variance matrix
is penalized with Θ = {θij} of dimensions p × p, where diagonal entries will penalize within
feature i and off-diagonals will penalize between features i and j. This is,

Σ⊗K +Θ⊗ I

The second Kronecker summand Θ ⊗ I is a sparse matrix consisting of non-zero diagonal and
sub-diagonals. The Kronecker_cov function derives the penalized Kronecker (co)variance matrix
by computing densely only the first Kronecker summand Σ ⊗ K, and then calculating and adding
accordingly only the non-zero entries of Θ⊗ I.

Note: Swapping the order of the matrices in the above Kronecker operations will yield a different
result. In this case the penalized matrix

K⊗Σ+ I⊗Θ

corresponds to the penalized multi-variate (co)variance matrix of the transposed of the above multi-
variate random matrix X, now with features in rows and subjects in columns. This can be achieved
by setting swap=TRUE in the Kronecker_cov function.

Hadamard product form.

Assume the random variable x0 is a subset of x containing entries corresponding to specific combi-
nations of subjects and features, then the (co)variance matrix of the vector x0 will be a Hadamard
product formed by the entry-wise product of only the elements of Σ and K involved in the combi-
nations contained in x0; this is

(Z1ΣZ′
1)� (Z2KZ′

2)

where Z1 and Z2 are incidence matrices mapping from entries of the random variable x0 to rows
(and columns) of Σ and K, respectively. This (co)variance matrix can be obtained using matrix
indexing (see help(Hadamard)), as

Sigma[IDS,IDS]*K[IDK,IDK]

where IDS and IDK are integer vectors whose entries are the row (and column) number of Σ and K,
respectively, that are mapped at each row of Z1 and Z2, respectively.

The penalized version of this Hadamard product (co)variance matrix will be

(Z1ΣZ′
1)� (Z2KZ′

2) + (Z1ΘZ′
1)� (Z2IZ′

2)

The Hadamard_cov function derives this penalized (co)variance matrix using matrix indexing, as

Sigma[IDS,IDS]*K[IDK,IDK] + Theta[IDS,IDS]*I[IDK,IDK]

Likewise, this function computes densely only the first Hadamard summand and then calculates and
adds accordingly only the non-zero entries of the second summand.

Multivariate variance matrix 9

Value

Returns the penalized (co)variance matrix formed either as a Kronecker or Hadamard product. For
the Kronecker product case, it can be a sub-matrix of the Kronecker product as per the rows and
cols arguments.

Examples

require(tensorEVD)

Generate rectangular some covariance matrices
n = 30; p = 10

K = crossprod(matrix(rnorm(n*p), ncol=n)) # n x n matrix
Sigma = crossprod(matrix(rnorm(n*p), ncol=p)) # p x p matrix
Theta = crossprod(matrix(rnorm(n*p), ncol=p)) # p x p matrix

==
Kronecker covariance
==
G1 = Kronecker_cov(Sigma, K, Theta = Theta)

it must equal to:
D = diag(n) # diagonal matrix of dimension n
G2 = Kronecker(Sigma, K) + Kronecker(Theta, D)
all.equal(G1,G2)

(b) Swapping the order of the matrices
G1 = Kronecker_cov(Sigma, K, Theta, swap = TRUE)

in this case the kronecker is swapped:
G2 = Kronecker(K, Sigma) + Kronecker(D, Theta)
all.equal(G1,G2)

(c) Selecting specific entries of the output
We want only some rows and columns
rows = c(1,3,5)
cols = c(10,30,50)
G1 = Kronecker_cov(Sigma, K, Theta, rows=rows, cols=cols)

this can be preferable instead of:
G2 = (Kronecker(Sigma, K) + Kronecker(Theta, D))[rows,cols]
all.equal(G1,G2)

(d) Inplace calculation
overwrite the output at the same address as the input:
G1 = K[] # copy of K to be used as input
add = pryr::address(G1) # address of G on entry
G1 = Kronecker_cov(Sigma=0.5, G1, Theta=1.5)
pryr::address(G1) == add # on exit, G was moved to a different address

G2 = K[]
add = pryr::address(G2)

10 Tensor EVD

G2 = Kronecker_cov(Sigma=0.5, G2, Theta=1.5, inplace=TRUE)
pryr::address(G2) == add # on exit, G remains at the same address
all.equal(G1,G2)

==
Hadamard covariance
==
Define IDs for a Hadamard of size m x m
m = 1000
IDS = sample(1:p, m, replace=TRUE)
IDK = sample(1:n, m, replace=TRUE)

G1 = Hadamard_cov(Sigma, K, Theta, IDS=IDS, IDK=IDK)

it must equal to:
G2 = Sigma[IDS,IDS]*K[IDK,IDK] + Theta[IDS,IDS]*D[IDK,IDK]
all.equal(G1,G2)

(b) Inplace calculation
overwrite the output at the same address as the input:
G1 = K[] # copy of K to be used as input
add = pryr::address(G1) # address of G on entry
G1 = Hadamard_cov(Sigma=0.5, G1, Theta=1.5, IDS=rep(1,n))
pryr::address(G1) == add # on exit, G was moved to a different address

G2 = K[]
add = pryr::address(G2)
G2 = Hadamard_cov(Sigma=0.5, G2, Theta=1.5, IDS=rep(1,n), inplace=TRUE)
pryr::address(G2) == add # on exit, G remains at the same address
all.equal(G1,G2)

Tensor EVD Tensor EVD

Description

Fast eigen value decomposition (EVD) of the Hadamard product of two matrices

Usage

tensorEVD(K1, K2, ID1, ID2, alpha = 1.0,
EVD1 = NULL, EVD2 = NULL,
d.min = .Machine$double.eps,
make.dimnames = FALSE, verbose = FALSE)

Arguments

K1, K2 (numeric) Covariance structure matrices

Tensor EVD 11

ID1 (character/integer) Vector of length nwith either names or indices mapping from
rows/columns of K1 into the resulting tensor product

ID2 (character/integer) Vector of length nwith either names or indices mapping from
rows/columns of K2 into the resulting tensor product

alpha (numeric) Proportion of variance of the tensor product to be explained by the
tensor eigenvectors

EVD1 (list) (Optional) Eigenvectors and eigenvalues of K1 as produced by the eigen
function

EVD2 (list) (Optional) Eigenvectors and eigenvalues of K2 as produced by the eigen
function

d.min (numeric) Tensor eigenvalue threshold. Default is a numeric zero. Only eigen-
vectors with eigenvalue passing this threshold are returned

make.dimnames TRUE or FALSE to whether add rownames and colnames attributes to the output

verbose TRUE or FALSE to whether show progress

Details

Let the n × n matrix K to be the Hadamard product (aka element-wise or entry-wise product)
involving two smaller matrices K1 and K2 of dimensions n1 and n2, respectively,

K = (Z1K1Z′
1)� (Z2K2Z′

2)

where Z1 and Z2 are incidence matrices mapping from rows (and columns) of the resulting Hadamard
to rows (and columns) of K1 and K2, respectively.

Let the eigenvalue decomposition (EVD) of K1 and K2 to be K1 = V1D1V′
1 and K2 = V2D2V′

2.
Using properties of the Hadamard and Kronecker products, an EVD of the Hadamard product K
can be approximated using the EVD of K1 and K2 as

K = VDV′

where D = D1 ⊗ D2 is a diagonal matrix containing N = n1 × n2 tensor eigenvalues d1 ≥ ... ≥
dN ≥ 0 and V = (Z1 ? Z2)(V1 ⊗ V2) = [v1, ..., vN] is matrix containing N tensor eigenvectors
vk; here the term Z1 ? Z2 is the "face-splitting product" (aka "transposed Khatri–Rao product") of
matrices Z1 and Z2.

Each tensor eigenvector k is derived separately as a Hadamard product using the corresponding i(k)
and j(k) eigenvectors v1i(k) and v2j(k) from V1 and V2, respectively, this is

vk = (Z1v1i(k))� (Z2v2j(k))

The tensorEVD function derives each of these eigenvectors vk by matrix indexing using integer
vectors ID1 and ID2. The entries of these vectors are the row (and column) number of K1 and K2

that are mapped at each row of Z1 and Z2, respectively.

12 Tensor EVD

Value

Returns a list object that contains the elements:

• values: (vector) resulting tensor eigenvalues.

• vectors: (matrix) resulting tensor eigenvectors.

• totalVar: (numeric) total variance of the tensor matrix product.

Examples

require(tensorEVD)
set.seed(195021)

Generate matrices K1 and K2 of dimensions n1 and n2
n1 = 10; n2 = 15
K1 = crossprod(matrix(rnorm(n1*(n1+10)), ncol=n1))
K2 = crossprod(matrix(rnorm(n2*(n2+10)), ncol=n2))

(a) Example 1. Full design (Kronecker product)
ID1 = rep(seq(n1), each=n2)
ID2 = rep(seq(n2), times=n1)

Direct EVD of the Hadamard product
K = K1[ID1,ID1]*K2[ID2,ID2]
EVD0 = eigen(K)

Tensor EVD using K1 and K2
EVD = tensorEVD(K1, K2, ID1, ID2)

Eigenvectors and eigenvalues are numerically equal
all.equal(EVD0$values, EVD$values)
all.equal(abs(EVD0$vectors), abs(EVD$vectors))

(b) If a proportion of variance explained is specified,
only the eigenvectors needed to explain such proportion are derived
alpha = 0.95
EVD = tensorEVD(K1, K2, ID1, ID2, alpha=alpha)
dim(EVD$vectors)

For the direct EVD
varexp = cumsum(EVD0$values/sum(EVD0$values))
index = 1:which.min(abs(varexp-alpha))
dim(EVD0$vectors[,index])

(c) Example 2. Incomplete design (Hadamard product)
Eigenvectors and eigenvalues are no longer equivalent
n = n1*n2 # Sample size n
ID1 = sample(seq(n1), n, replace=TRUE) # Randomly sample of ID1
ID2 = sample(seq(n2), n, replace=TRUE) # Randomly sample of ID2

K = K1[ID1,ID1]*K2[ID2,ID2]
EVD0 = eigen(K)
EVD = tensorEVD(K1, K2, ID1, ID2)

Tensor EVD 13

all.equal(EVD0$values, EVD$values)
all.equal(abs(EVD0$vectors), abs(EVD$vectors))

However, the sum of the eigenvalues is equal to the trace(K)
c(sum(EVD0$values), sum(EVD$values), sum(diag(K)))

And provide the same approximation for K
K01 = EVD0$vectors%*%diag(EVD0$values)%*%t(EVD0$vectors)
K02 = EVD$vectors%*%diag(EVD$values)%*%t(EVD$vectors)
c(all.equal(K,K01), all.equal(K,K02))

When n is different from N=n1xn2, both methods provide different
number or eigenvectors/eigenvalues. The eigen function provides
a number of eigenvectors equal to the minimum between n and N
for the tensorEVD, this number is always N

(d) Sample size n being half of n1 x n2
n = n1*n2/2
ID1 = sample(seq(n1), n, replace=TRUE)
ID2 = sample(seq(n2), n, replace=TRUE)

K = K1[ID1,ID1]*K2[ID2,ID2]
EVD0 = eigen(K)
EVD = tensorEVD(K1, K2, ID1, ID2)

c(eigen=sum(EVD0$values>1E-10), tensorEVD=sum(EVD$values>1E-10))

(e) Sample size n being twice n1 x n2
n = n1*n2*2
ID1 = sample(seq(n1), n, replace=TRUE)
ID2 = sample(seq(n2), n, replace=TRUE)

K = K1[ID1,ID1]*K2[ID2,ID2]
EVD0 = eigen(K)
EVD = tensorEVD(K1, K2, ID1, ID2)

c(eigen=sum(EVD0$values>1E-10), tensorEVD=sum(EVD$values>1E-10))

Index

Hadamard (Hadamard product), 2
Hadamard product, 2
Hadamard_cov (Multivariate variance

matrix), 6

Kronecker (Kronecker product), 4
Kronecker product, 4
Kronecker_cov (Multivariate variance

matrix), 6

Multivariate variance matrix, 6

Tensor EVD, 10
tensorEVD (Tensor EVD), 10

14

	Hadamard product
	Kronecker product
	Multivariate variance matrix
	Tensor EVD
	Index

