Package 'powerindexR'

May 30, 2024
Type Package
Title Measuring the Power in Voting Systems
Version 1.6
Date 2024-05-30
Depends $\mathrm{R}(>=3.0 .0)$
Description This R package allows the determination of some distributions of the vot- ers' power when passing laws in weighted voting situations.
License GPL-2
LazyLoad yes
Repository CRAN
NeedsCompilation no
Author Livino M. Armijos-Toro [aut, cre],
Jose M. Alonso-Meijide [aut],
Manuel A. Mosquera [aut],
Alejandro Saavedra-Nieves [aut]
Maintainer Livino M. Armijos-Toro livinoa@gmail.com
RoxygenNote 7.0.2
Date/Publication 2024-05-30 15:10:03 UTC
R topics documented:
powerindexR-package 2
MWC 3
pi.banzhaf 4
pi.colomermartinez 5
pi.johnston 6
pi.johnstoncolomermartinez 7
pi.shapley 8
powerindex 9
QMWC 10
Index 12

Description

This R package allows the determination of some distributions of the voters' power when passing laws in weighted voting situations.

Details

The DESCRIPTION file:

Package:	powerindexR
Type:	Package
Title:	Measuring the Power in Voting Systems
Version:	1.6
Date:	$2024-05-30$
Authors@R:	c(person("Livino M.", "Armijos-Toro", role = c("aut", "cre"), email="livinoa @ gmail.com"), person("Jos
Depends:	R(>= 3.0.0)
Description:	This R package allows the determination of some distributions of the voters' power when passing laws i
License:	GPL-2
LazyLoad:	yes
Packaged:	
Repository:	CRAN
NeedsCompilation:	no
Author:	Livino M. Armijos-Toro [aut, cre], Jose M. Alonso-Meijide [aut], Manuel A. Mosquera [aut], Alejandro
Maintainer:	Livino M. Armijos-Toro <livinoa@ gmail.com>
RoxygenNote:	7.0 .2

Index of help topics:

MWC	Obtain the minimal winning coalitions
QMWC	Obtain the quasi-minimal winning coalitions
pi.banzhaf	Power based on the Banzhaf index.
pi.colomermartinez	Power based on the Colomer-Martinez index.
pi.johnston	Power based on the Johnston index.
pi.johnstoncolomermartinez	
	Power based on the Jonhston-Colomer-Martinez
	index.
pi.shapley	Power based on the Shapley-Shubik index.
powerindex	Obtain several measures of power powerindexR-package

This R package allows the determination of some distributions of the voters' power when passing laws in weighted voting situations.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

References

Alonso-Meijide, J. M., \& Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44. https://doi.org/10.1007/s10479-005-2242-y.
Brams, S. J., \& Affuso, P. J. (1976). Power and size: A new paradox. Theory and Decision, 7(1-2), 29-56. https://doi.org/10.1007/BF00141101.
Colomer, J. M., \& Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63. https://doi.org/10.1177/0951692895007001003.
Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914. https://doi.org/10.1068/a100907.

Lucas, W. F. (1983). Measuring power in weighted voting systems (pp. 183-238). Springer New York. https://doi.org/10.1007/978-1-4612-5430-0_9

MWC
 Obtain the minimal winning coalitions

Description

This function determines the minimal winning coalitions in a weighted majority game.

Usage

MWC(quota, weights)

Arguments

quota Numerical value that represents the majority in a given voting.
weights \quad Numerical vector of dimension n that indicates the weights of n agents in a given voting.

Value

Number of Minimal Winning Coalitions
Total amount of Minimal Winning Coalitions.
Minimal Winning Coalitions
Each row indicates a binary representation of each Minimal Winning Coalition.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

Examples

```
weights<-c(137, 85,71, 32, 9, 8, 5, 2,1)
quota<-176
MWC(quota,weights)
```

```
pi.banzhaf Power based on the Banzhaf index.
```


Description

This function determines the distribution of the power based on the Banzhaf index and the BanzafOwen value.

Usage

pi.banzhaf(quota, weights, partition $=$ NULL, normalized $=$ FALSE, swing $=$ FALSE)

Arguments

quota Numerical value that represents the majority in a given voting.
weights \quad Numerical vector of dimension n that indicates the weights of n agents in a given voting.
partition Numerical vector that indicates the partition of voters. Each component indicates the element of the partition to which such voter belongs. If it is not NULL, it provides the distribution of the power based on the Banzhaf-Owen value.
normalized Logical option to obtain the normalized Banzhaf values.
swing Logical option to obtain the number of swings of each voter.

Value

Banzhaf value The Banzhaf value, if partition=NULL.
Banzhaf-Owen value
The Banzhaf-Owen value, if partition!=NULL.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

References

Alonso-Meijide, J. M., \& Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44.
Brams, S. J., \& Affuso, P. J. (1976). Power and size: A new paradox. Theory and Decision, 7(1-2), 29-56.

Examples

\# Example Banzhaf value
weights<-c $(137,85,71,32,9,8,5,2,1)$
quota<-176
pi.banzhaf(quota, weights)
pi.banzhaf(quota, weights, normalized=TRUE)
\# Example Banzhaf-Owen value
quota<-30
weights<-c(28, 16, 5, 4, 3, 3)
\# Partition=\{\{1\},\{2,4,6\},\{3,5\}\}
pi.banzhaf(quota, weights, partition=c(1,2,3,2,3,2))

```
pi.colomermartinez Power based on the Colomer-Martinez index.
```


Description

This function determines the distribution of the power based on the Colomer-Martinez index.

Usage

pi.colomermartinez(quota, weights, minimal = FALSE)

Arguments

quota Numerical value that represents the majority in a given voting.
weights \quad Numerical vector of dimension n that indicates the weights of n agents in a given voting.
minimal Logical option to obtain the Minimal Winning Coalitions.

Value

Colomer-Martinez
The Colomer-Martinez index.
Number of Minimal Winning Coalitions
Total amount of Minimal Winning Coalitions.
Minimal Winning Coalitions
Each row indicates a binary representation of each Minimal Winning Coalition.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

References

Colomer, J. M., \& Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63.

Examples

```
    weights<-c(137, 85,71,32,9,8,5,2,1)
    quota<-176
    pi.colomermartinez(176,weights,minimal=TRUE)
```

 pi. johnston Power based on the Johnston index.

Description

This function determines the distribution of the power based on the Johnston index.

Usage

pi.johnston(quota, weights, quasiminimal = FALSE)

Arguments

quota Numerical value that represents the majority in a given voting.
weights \quad Numerical vector of dimension n that indicates the weights of n agents in a given voting.
quasiminimal Logical option to obtain the Quasi-Minimal Winning Coalitions.

Value

Johnston The Jonhston index.
Number of Quasi-Minimal Winning Coalitions
Total amount of Quasi-Minimal Winning Coalitions.
Quasi-Minimal Winning Coalitions
Each row indicates a binary representation of each Quasi-Minimal Winning Coalition.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

References

Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914.

Examples

```
weights<-c(137, 85, 71, 32, 9, 8,5,2,1)
quota<-176
pi.johnston(176,weights,quasiminimal=TRUE)
```

```
pi.johnstoncolomermartinez
```

Power based on the Jonhston-Colomer-Martinez index.

Description

This function determines the distribution of the power based on the Jonhston-Colomer-Martinez index.

Usage

pi.johnstoncolomermartinez(quota, weights)

Arguments

quota Numerical value that represents the majority in a given voting.
weights \quad Numerical vector of dimension n that indicates the weights of n agents in a given voting.

Value

Jonhston-Colomer-Martinez
The Jonhston-Colomer-Martinez index.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

References

Colomer, J. M., \& Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63.

Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914.

Examples

```
weights<-c(137, 85,71, 32,9,8,5,2,1)
quota<-176
pi.johnstoncolomermartinez(176,weights)
```

```
pi.shapley Power based on the Shapley-Shubik index.
```


Description

This function determines the distribution of the power based on the Shapley-Shubik index and the Owen value.

Usage

pi.shapley(quota, weights, partition = NULL)

Arguments

quota \quad Numerical value that represents the majority in a given voting.
weights \quad Numerical vector of dimension n that indicates the weights of n agents in a given voting.
partition Numerical vector that indicates the partition of voters. Each component indicates the element of the partition to which such voter belongs. If it is not NULL, it provides the distribution of the power based on the Owen value.

Value

Shapley value The Shapley value, if partition=NULL.
Owen value The Owen value, if partition!=NULL.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

References

Alonso-Meijide, J. M., \& Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44.

Lucas, W. F. (1983). Measuring power in weighted voting systems (pp. 183-238). Springer New York.

Examples

```
# Example Shapley value
weights<-c(137, 85,71, 32, 9, 8,5,2,1)
quota<-176
pi.shapley(quota,weights)
# Example Owen value
quota<-30
```

```
weights<-c(28, 16, 5, 4, 3, 3)
# Partition={{1},{2,4,6},{3,5}}
pi.shapley(quota,weights,partition=c(1,2,3,2,3,2))
```

```
powerindex Obtain several measures of power
```


Description

This general function allows the determination of several distributions of the power under different approaches in a weighted voting situation.

Usage

powerindex (quota, weights, index = c("S", "B", "J", "CM", "JCM"),
partition = NULL, quasiminimal $=$ FALSE, minimal $=$ FALSE, normalized $=$ FALSE, swing = FALSE)

Arguments

$$
\begin{array}{ll}
\text { quota } & \begin{array}{l}
\text { Numerical value that represents the majority in a given voting. } \\
\text { weights } \\
\text { Numerical vector of dimension } n \text { that indicates the weights of } n \text { agents in a } \\
\text { given voting. }
\end{array} \\
\text { index } & \begin{array}{l}
\text { Character that indicates the used approach. S and B denote the Shapley-Shubik } \\
\text { index and the Banzhaf index, and the Owen index and the Banzhaf-Owen index } \\
\text { if partition exist. J is used for obtaining the Jonhston index, CM determines the } \\
\text { Colomer-Martinez index and JCM is used for obtaining the Jonhston-Colomer- } \\
\text { Martinez index. }
\end{array} \\
\text { partition } & \begin{array}{l}
\text { Numerical vector that indicates the partition of voters. Each component indi- } \\
\text { cates the element of the partition to which such voter belongs. }
\end{array} \\
\text { quasiminimal } & \begin{array}{l}
\text { Logical option to obtain the Quasi-Minimal Winning Coalitions. }
\end{array} \\
\text { minimal } & \begin{array}{l}
\text { Logical option to obtain the Minimal Winning Coalitions. }
\end{array} \\
\text { normalized } & \begin{array}{l}
\text { Logical option to obtain the normalized Banzhaf values. }
\end{array} \\
\text { swing } & \text { Logical option to obtain the number of swings of each voter. }
\end{array}
$$

Value

See the values of the respective functions.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

References

Alonso-Meijide, J. M., \& Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44.

Brams, S. J., \& Affuso, P. J. (1976). Power and size: A new paradox. Theory and Decision, 7(1-2), 29-56.

Colomer, J. M., \& Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63.
Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914.

Lucas, W. F. (1983). Measuring power in weighted voting systems (pp. 183-238). Springer New York.

Examples

```
weights<-c(137, 85, 71, 32, 9, 8, 5, 2, 1)
quota<-176
powerindex(quota,weights,index="S")
powerindex(quota, weights,index="B", swing=TRUE)
powerindex(quota, weights,index="B", partition=c(1, 1, 2, 2, 3, 3,4,4,4), swing=TRUE)
powerindex(quota, weights,index="J", quasiminimal=TRUE)
```

```
QMWC
```

Obtain the quasi-minimal winning coalitions

Description

This function determines the quasi-minimal winning coalitions in a weighted majority game.

Usage

QMWC(quota, weights)

Arguments

quota Numerical value that represents the majority in a given voting.
weights \quad Numerical vector of dimension n that indicates the weights of n agents in a given voting.

Value

Number of Quasi-Minimal Winning Coalitions
Total amount of Quasi-Minimal Winning Coalitions.
Quasi-Minimal Winning Coalitions
Each row indicates a binary representation of each Quasi-Minimal Winning Coalition.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro SaavedraNieves.

Examples

```
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
QMWC(quota,weights)
```


Index

```
* powerindex
    powerindexR-package, 2
MWC, 3
pi.banzhaf,4
pi.colomermartinez,5
pi.johnston,6
pi.johnstoncolomermartinez,7
pi.shapley,8
powerindex,9
powerindexR (powerindexR-package), 2
powerindexR-package, 2
QMWC, 10
```

