Package 'partition'

May 22, 2024

Type Package

Title Agglomerative Partitioning Framework for Dimension Reduction

Version 0.2.1

Maintainer Malcolm Barrett <malcolmbarrett@gmail.com>

Description A fast and flexible framework for agglomerative partitioning. 'partition' uses an approach called Direct-Measure-Reduce to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set. 'partition' is flexible, as well: how variables are selected to reduce, how information loss is measured, and the way data is reduced can all be customized. 'partition' is based on the Partition framework discussed in Millstein et al. (2020)

<doi:10.1093/bioinformatics/btz661>.

License MIT + file LICENSE

URL https://uscbiostats.github.io/partition/,
 https://github.com/USCbiostats/partition

BugReports https://github.com/USCbiostats/partition/issues

Depends R (>= 3.3.0)

Imports crayon, dplyr (>= 0.8.0), forcats, ggplot2 (>= 3.3.0), infotheo, magrittr, MASS, pillar, progress, purrr, Rcpp, rlang, stringr, tibble, tidyr (>= 1.0.0)

Suggests covr, genieclust, ggcorrplot, gtools, knitr, rmarkdown, spelling, testthat (>= 3.0.0)

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8 Language en-US LazyData true

RoxygenNote 7.2.3

NeedsCompilation yes

Author Joshua Millstein [aut],

Malcolm Barrett [aut, cre] (https://orcid.org/0000-0002-8070-3042>))

Katelyn Queen [aut] (https://orcid.org/0000-0002-8070-3042>)

Repository CRAN

Date/Publication 2024-05-22 15:40:01 UTC

R topics documented:

as_director
as_measure
as_partitioner
as_partition_step
as_reducer
baxter_data
corr
direct_distance
direct_k_cluster
filter_reduced
icc
is_partition
is_partitioner
is_partition_step
mapping_key
map_partition
measure_icc
measure_min_icc
measure_min_r2
measure_std_mutualinfo
measure_variance_explained
mutual_information
partition
partition_scores
part_icc
part_kmeans
part_minr2
- part_pc1
part_stdmi
permute_df
plot_area_clusters
plot_permutation
reduce_cluster
reduce_first_component
reduce kmeans 3

as_director 3

reduce_scaled_mean														
replace_partitioner .											 			 ,
scaled_mean											 			
simulate_block_data											 			
super_partition											 			
test_permutation											 			

Index 40

as_director

Create a custom director

Description

Directors are functions that tell the partition algorithm what to try to reduce. as_director() is a helper function to create new directors to be used in partitioners. partitioners can be created with as_partitioner().

Usage

```
as_director(.pairs, .target, ...)
```

Arguments

```
.pairs a function that returns a matrix of targets (e.g. a distance matrix of variables)
.target a function that returns a vector of targets (e.g. the minimum pair)
... Extra arguments passed to .f.
```

Value

```
a function to use in as_partitioner()
```

See Also

```
Other directors: direct_distance(), direct_k_cluster()
```

```
# use euclidean distance to calculate distances
euc_dist <- function(.data) as.matrix(dist(t(.data)))
# find the pair with the minimum distance
min_dist <- function(.x) {
  indices <- arrayInd(which.min(.x), dim(as.matrix(.x)))

# get variable names with minimum distance
c(
  colnames(.x)[indices[1]],
  colnames(.x)[indices[2]]</pre>
```

4 as_measure

```
)
as_director(euc_dist, min_dist)
```

as_measure

Create a custom metric

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

Usage

```
as_measure(.f, ...)
```

Arguments

.f a function that returns either a numeric vector or a data.frame... Extra arguments passed to .f.

Value

a function to use in as_partitioner()

See Also

```
Other metrics: measure_icc(), measure_min_icc(), measure_min_r2(), measure_std_mutualinfo(), measure_variance_explained()

Other metrics: measure_icc(), measure_min_icc(), measure_min_r2(), measure_std_mutualinfo(), measure_variance_explained()
```

```
inter_item_reliability <- function(mat) {
  corrs <- corr(mat)
  corrs[lower.tri(corrs, diag = TRUE)] <- NA

  corrs %>%
    colMeans(na.rm = TRUE) %>%
    mean(na.rm = TRUE)
}

measure_iir <- as_measure(inter_item_reliability)
measure_iir</pre>
```

as_partitioner 5

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with as_partitioner().

Pass partitioner objects to the partitioner argument of partition().

Usage

```
as_partitioner(direct, measure, reduce)
```

Arguments

```
direct a function that directs, possibly created by as_director()

measure a function that measures, possibly created by as_measure()

reduce a function that reduces, possibly created by as_reducer()
```

Value

```
a partitioner
```

See Also

```
Other partitioners: part_icc(), part_kmeans(), part_minr2(), part_pc1(), part_stdmi(), replace_partitioner()
```

```
as_partitioner(
  direct = direct_distance_pearson,
  measure = measure_icc,
  reduce = reduce_scaled_mean
)
```

6 as_partition_step

as_partition_step

Create a partition object from a data frame

Description

as_partition_step() creates a partition_step object. partition_steps are used while iterating through the partition algorithm: it stores necessary information about how to proceed in the partitioning, such as the information threshold. as_partition_step() is primarily called internally by partition() but can be helpful while developing partitioners.

Usage

```
as_partition_step(
    .x,
    threshold = NA,
    reduced_data = NA,
    target = NA,
    metric = NA,
    tolerance = 0.01,
    var_prefix = NA,
    partitioner = NA,
    ...
)
```

Arguments

 $\begin{array}{ccc} . \, x & & a \, data. \, frame \, or \, partition_step \, object \\ threshold & The \, minimum \, information \, loss \, allowable \\ \end{array}$

reduced_data A data set with reduced variables

target A character or integer vector: the variables to reduce

metric A measure of information

tolerance A tolerance around the threshold to accept a reduction

var_prefix Variable name for reduced variables

partitioner A partitioner, a part_*() function or one created with as_partitioner().

.. Other objects to store during the partition step

Value

```
a partition_step object
```

```
.df <- data.frame(x = rnorm(100), y = rnorm(100))
as_partition_step(.df, threshold = .6)</pre>
```

as_reducer 7

as_reducer

Create a custom reducer

Description

Reducers are functions that tell the partition algorithm how to reduce the data. as_reducer() is a helper function to create new reducers to be used in partitioners. partitioners can be created with as_partitioner().

Usage

```
as_reducer(.f, ..., returns_vector = TRUE, first_match = NULL)
```

Arguments

.f a function that returns either a numeric vector or a data. frame

... Extra arguments passed to .f.

returns_vector logical. Does .f return a vector? TRUE by default. If FALSE, assumes that .f

returns a data.frame.

first_match logical. Should the partition algorithm stop when it finds a reduction that is

equal to the threshold? Default is TRUE for reducers that return a data.frame

and FALSE for reducers that return a vector

Value

```
a function to use in as_partitioner()
```

See Also

```
Other reducers: reduce_first_component(), reduce_kmeans(), reduce_scaled_mean()
Other reducers: reduce_first_component(), reduce_kmeans(), reduce_scaled_mean()
```

```
reduce_row_means <- as_reducer(rowMeans)
reduce_row_means</pre>
```

8 baxter_data

baxter_data

Microbiome data

Description

Clinical and microbiome data derived from "Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions" by Baxter et al. (2016). These data represent a subset of 172 health participants. baxter_clinical contains 8 clinical variables for each of the participants: sample_name, id, age, bmi, gender, height, total_reads, and disease_state (all H for healthy). baxter_otu has 1,234 columns, where each columns represent an Operational Taxonomic Unit (OTU). OTUs are species-like relationships among bacteria determined by analyzing their RNA. The cells are logged counts for how often the OTU was detected in a participant's stool sample. Each column name is a shorthand name, e.g. otu1; you can find the true name of the OTU mapped in baxter_data_dictionary. baxter_family and baxter_genus are also logged counts but instead group OTUs at the family and genus level, respectively, a common approach to reducing microbiome data. Likewise, the column names are shorthands, which you can find mapped in baxter_data_dictionary.

Usage

```
baxter_clinical
baxter_otu
baxter_family
baxter_genus
baxter_data_dictionary
```

Format

5 data frames

An object of class tbl_df (inherits from tbl, data.frame) with 172 rows and 1234 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 172 rows and 35 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 172 rows and 82 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 1351 rows and 3 columns.

Source

Baxter et al. (2016) doi:10.1186/s1307301602903

corr 9

corr

Efficiently fit correlation coefficient for matrix or two vectors

Description

Efficiently fit correlation coefficient for matrix or two vectors

Usage

```
corr(x, y = NULL, spearman = FALSE)
```

Arguments

x a matrix or vector y a vector. Optional.

spearman's Logical. Use Spearman's correlation?

Value

a numeric vector, the correlation coefficient

Examples

```
library(dplyr)
# fit for entire data set
iris %>%
   select_if(is.numeric) %>%
   corr()

# just fit for two vectors
corr(iris$Sepal.Length, iris$Sepal.Width)
```

direct_distance

Target based on minimum distance matrix

Description

Directors are functions that tell the partition algorithm what to try to reduce. as_director() is a helper function to create new directors to be used in partitioners. partitioners can be created with as_partitioner().

direct_distance() fits a distance matrix using either Pearson's or Spearman's correlation and finds the pair with the smallest distance to target. If the distance matrix already exists, direct_distance() only fits the distances for any new reduced variables. direct_distance_pearson() and direct_distance_spearman() are convenience functions that directly call the type of distance matrix.

10 direct_k_cluster

Usage

```
direct_distance(.partition_step, spearman = FALSE)
direct_distance_pearson(.partition_step)
direct_distance_spearman(.partition_step)
```

Arguments

Value

```
a partition_step object
```

See Also

Other directors: as_director(), direct_k_cluster()

direct_k_cluster

Target based on K-means clustering

Description

Directors are functions that tell the partition algorithm what to try to reduce. as_director() is a helper function to create new directors to be used in partitioners. partitioners can be created with as_partitioner().

direct_k_cluster() assigns each variable to a cluster using K-means. As the partition looks for the best reduction, direct_k_cluster() iterates through values of k to assign clusters. This search is handled by the binary search method by default and thus does not necessarily need to fit every value of k.

Usage

```
direct_k_cluster(
   .partition_step,
   algorithm = c("armadillo", "Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
   search = c("binary", "linear"),
   init_k = NULL,
   seed = 1L
)
```

filter_reduced 11

Arguments

.partition_step

a partition_step object

algorithm The K-Means algorithm to use. The default is a fast version of the LLoyd al-

gorithm written in armadillo. The rest are options in kmeans(). In general, armadillo is fastest, but the other algorithms can be faster in high dimensions.

search The search method. Binary search is generally more efficient but linear search

can be faster in very low dimensions.

init_k The initial k to test. If NULL, then the initial k is the threshold times the number

of variables.

seed The seed to set for reproducibility

Value

```
a partition_step object
```

See Also

Other directors: as_director(), direct_distance()

filter_reduced Filter the reduced mappings

Description

filter_reduced() and unnest_reduced() are convenience functions to quickly retrieve the mappings for only the reduced variables. filter_reduced() returns a nested tibble while unnest_reduced() unnests it.

Usage

```
filter_reduced(.partition)
unnest_reduced(.partition)
```

Arguments

.partition a partition object

Value

a tibble with mapping key

icc icc

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)

# A tibble: 3 x 4
filter_reduced(prt)

# A tibble: 9 x 4
unnest_reduced(prt)</pre>
```

icc

Calculate the intraclass correlation coefficient

Description

icc() efficiently calculates the ICC for a numeric data set.

Usage

```
icc(.x, method = c("r", "c"))
```

Arguments

. x a data set

method The method source: both the pure R and C++ versions are efficient

Value

```
a numeric vector of length 1
```

```
library(dplyr)
iris %>%
  select_if(is.numeric) %>%
  icc()
```

is_partition 13

is_partition

Is this object a partition?

Description

Is this object a partition?

Usage

```
is_partition(x)
```

Arguments

Х

an object to be tested

Value

logical: TRUE or FALSE

 $is_partitioner$

Is this object a partitioner?

Description

Is this object a partitioner?

Usage

```
is_partitioner(x)
```

Arguments

Χ

an object to be tested

Value

logical: TRUE or FALSE

14 mapping_key

is_partition_step

Is this object a partition_step?

Description

Is this object a partition_step?

Usage

```
is_partition_step(x)
```

Arguments

Х

an object to be tested

Value

logical: TRUE or FALSE

mapping_key

Return partition mapping key

Description

mapping_key() returns a data frame with each reduced variable and its mapping and information loss; the mapping and indices are represented as list-cols (so there is one row per variable in the reduced data set). unnest_mappings() unnests the list columns to return a tidy data frame. mapping_groups() returns a list of mappings (either the variable names or their column position).

Usage

```
mapping_key(.partition)
unnest_mappings(.partition)
mapping_groups(.partition, indices = FALSE)
```

Arguments

.partition a partition object

indices logical. Return just the indices instead of the names? Default is FALSE.

Value

a tibble

map_partition 15

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)
# tibble: 6 x 4
mapping_key(prt)
# tibble: 12 x 4
unnest_mappings(prt)
# list: length 6
mapping_groups(prt)</pre>
```

map_partition

Map a partition across a range of minimum information

Description

map_partition() fits partition() across a range of minimum information values, specified in the information argument. The output is a tibble with a row for each value of information, a summary of the partition, and a list-col containing the partition object.

Usage

```
map_partition(
   .data,
   partitioner = part_icc(),
   ...,
   information = seq(0.1, 0.5, by = 0.1)
)
```

Arguments

Value

a tibble

16 measure_icc

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
map_partition(df, partitioner = part_pc1())</pre>
```

measure_icc

Measure the information loss of reduction using intraclass correlation coefficient

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

measure_icc() assesses information loss by calculating the intraclass correlation coefficient for the target variables.

Usage

```
measure_icc(.partition_step)
```

Arguments

Value

```
a partition_step object
```

```
Other metrics: as_measure(), measure_min_icc(), measure_min_r2(), measure_std_mutualinfo(), measure_variance_explained()
```

measure_min_icc 17

measure_min_icc	Measure the information loss of reduction using the minimum intra- class correlation coefficient
	class correlation coefficient

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

measure_min_icc() assesses information loss by calculating the intraclass correlation coefficient for each set of the target variables and finding their minimum.

Usage

```
measure_min_icc(.partition_step, search_method = c("binary", "linear"))
```

Arguments

Value

```
a partition_step object
```

See Also

```
Other metrics: as_measure(), measure_icc(), measure_min_r2(), measure_std_mutualinfo(), measure_variance_explained()
```

measure_min_r2

Measure the information loss of reduction using minimum R-squared

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

measure_min_r2() assesses information loss by calculating the minimum R-squared for the target variables.

Usage

```
measure_min_r2(.partition_step)
```

Arguments

Value

```
a partition_step object
```

See Also

Other metrics: as_measure(), measure_icc(), measure_min_icc(), measure_std_mutualinfo(), measure_variance_explained()

measure_std_mutualinfo

Measure the information loss of reduction using standardized mutual information

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

measure_std_mutualinfo() assesses information loss by calculating the standardized mutual information for the target variables. See mutual_information().

Usage

```
measure_std_mutualinfo(.partition_step)
```

Arguments

Value

```
a partition_step object
```

See Also

Other metrics: as_measure(), measure_icc(), measure_min_icc(), measure_min_r2(), measure_variance_explained

measure_variance_explained

Measure the information loss of reduction using the variance explained

Description

Metrics are functions that tell how much information would be lost for a given reduction in the data. reduce. as_measure() is a helper function to create new metrics to be used in partitioners. partitioners can be created with as_partitioner().

measure_variance_explained() assesses information loss by calculating the variance explained by the first component of a principal components analysis.

Usage

```
measure_variance_explained(.partition_step)
```

Arguments

Value

```
a partition_step object
```

See Also

Other metrics: as_measure(), measure_icc(), measure_min_icc(), measure_min_r2(), measure_std_mutualinfo()

mutual_information

Calculate the standardized mutual information of a data set

Description

mutual_information calculate the standardized mutual information of a data set using the infotheo package.

Usage

```
mutual_information(.data)
```

Arguments

.data

a dataframe of numeric values

20 partition

Value

a list containing the standardized MI and the scaled row means

Examples

```
library(dplyr)
iris %>%
  select_if(is.numeric) %>%
  mutual_information()
```

partition

Agglomerative partitioning

Description

partition() reduces data while minimizing information loss using an agglomerative partitioning algorithm. The partition algorithm is fast and flexible: at every iteration, partition() uses an approach called Direct-Measure-Reduce (see Details) to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set.

Usage

```
partition(
   .data,
   threshold,
   partitioner = part_icc(),
   tolerance = 1e-04,
   niter = NULL,
   x = "reduced_var",
   .sep = "_"
)
```

Arguments

.data	a data.frame to partition
threshold	the minimum proportion of information explained by a reduced variable; threshold sets a boundary for information loss because each reduced variable must explain at least as much as threshold as measured by the metric.
partitioner	a partitioner. See the part_*() functions and as_partitioner().
tolerance	a small tolerance within the threshold; if a reduction is within the threshold plus/minus the tolerance, it will reduce.
niter	the number of iterations. By default, it is calculated as 20% of the number of variables or 10, whichever is larger.
Х	the prefix of the new variable names
.sep	a character vector that separates x from the number (e.g. "reduced_var_1").

partition 21

Details

partition() uses an approach called Direct-Measure-Reduce. Directors tell the partition algorithm what to reduce, metrics tell it whether or not there will be enough information left after the reduction, and reducers tell it how to reduce the data. Together these are called a partitioner. The default partitioner for partition() is part_icc(): it finds pairs of variables to reduce by finding the pair with the minimum distance between them, it measures information loss through ICC, and it reduces data using scaled row means. There are several other partitioners available (part_*() functions), and you can create custom partitioners with as_partitioner() and replace_partitioner().

Value

a partition object

References

Millstein, Joshua, Francesca Battaglin, Malcolm Barrett, Shu Cao, Wu Zhang, Sebastian Stintzing, Volker Heinemann, and Heinz-Josef Lenz. 2020. "Partition: A Surjective Mapping Approach for Dimensionality Reduction." *Bioinformatics* 36 (3): https://doi.org/676–81.10.1093/bioinformatics/btz661.

Barrett, Malcolm and Joshua Millstein (2020). partition: A fast and flexible framework for data reduction in R. Journal of Open Source Software, 5(47), 1991, https://doi.org/10.21105/joss.01991

See Also

```
part_icc(), part_kmeans(), part_minr2(), part_pc1(), part_stdmi(), as_partitioner(),
replace_partitioner()
```

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# don't accept reductions where information < .6
prt <- partition(df, threshold = .6)
prt
# return reduced data
partition_scores(prt)
# access mapping keys
mapping_key(prt)
unnest_mappings(prt)
# use a lower threshold of information loss
partition(df, threshold = .5, partitioner = part_kmeans())
# use a custom partitioner
part_icc_rowmeans <- replace_partitioner(part_icc, reduce = as_reducer(rowMeans))
partition(df, threshold = .6, partitioner = part_icc_rowmeans)</pre>
```

22 partition_scores

partition_scores

Return the reduced data from a partition

Description

The reduced data is stored as reduced_data in the partition object and can thus be returned by subsetting object\$reduced_data. Alternatively, the functions partition_score() and fitted() also return the reduced data.

Usage

```
partition_scores(object, ...)
## S3 method for class 'partition'
fitted(object, ...)
```

Arguments

```
object a partition object
... not currently used (for S3 consistency with fitted())
```

Value

a tibble containing the reduced data for the partition

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)

# three ways to retrieve reduced data
partition_scores(prt)
fitted(prt)
prt$reduced_data</pre>
```

part_icc 23

part_icc

Partitioner: distance, ICC, scaled means

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with as_partitioner().

Pass partitioner objects to the partitioner argument of partition().

part_icc() uses the following direct-measure-reduce approach:

- direct: direct_distance(), Minimum Distance
- measure: measure_icc(), Intraclass Correlation
- reduce: reduce_scaled_mean(), Scaled Row Means

Usage

```
part_icc(spearman = FALSE)
```

Arguments

spearman

logical. Use Spearman's correlation for distance matrix?

Value

```
a partitioner
```

See Also

```
Other partitioners: as_partitioner(), part_kmeans(), part_minr2(), part_pc1(), part_stdmi(), replace_partitioner()
```

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition using part_icc()
partition(df, threshold = .6, partitioner = part_icc())</pre>
```

24 part_kmeans

part_kmeans

Partitioner: K-means, ICC, scaled means

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with as_partitioner().

Pass partitioner objects to the partitioner argument of partition().

part_kmeans() uses the following direct-measure-reduce approach:

- direct: direct_k_cluster(), K-Means Clusters
- measure: measure_min_icc(), Minimum Intraclass Correlation
- reduce: reduce_kmeans(), Scaled Row Means

Usage

```
part_kmeans(
  algorithm = c("armadillo", "Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
  search = c("binary", "linear"),
  init_k = NULL,
  n_hits = 4
)
```

Arguments

algorithm	The K-Means algorithm to use. The default is a fast version of the LLoyd algorithm written in armadillo. The rest are options in kmeans(). In general, armadillo is fastest, but the other algorithms can be faster in high dimensions.
search	The search method. Binary search is generally more efficient but linear search can be faster in very low dimensions.
init_k	The initial k to test. If NULL, then the initial k is the threshold times the number of variables.
n_hits	In linear search method, the number of iterations that should be under the threshold before reducing; useful for preventing false positives.

Value

```
a partitioner
```

```
Other partitioners: as_partitioner(), part_icc(), part_minr2(), part_pc1(), part_stdmi(), replace_partitioner()
```

part_minr2 25

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition using part_kmeans()
partition(df, threshold = .6, partitioner = part_kmeans())</pre>
```

part_minr2

Partitioner: distance, minimum R-squared, scaled means

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with as_partitioner().

Pass partitioner objects to the partitioner argument of partition().

part_minr2() uses the following direct-measure-reduce approach:

- direct: direct_distance(), Minimum Distance
- measure: measure_min_r2(), Minimum R-Squared
- reduce: reduce_scaled_mean(), Scaled Row Means

Usage

```
part_minr2(spearman = FALSE)
```

Arguments

spearman

logical. Use Spearman's correlation for distance matrix?

Value

```
a partitioner
```

```
Other partitioners: as_partitioner(), part_icc(), part_kmeans(), part_pc1(), part_stdmi(), replace_partitioner()
```

26 part_pc1

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition using part_minr2()
partition(df, threshold = .6, partitioner = part_minr2())</pre>
```

part_pc1

Partitioner: distance, first principal component, scaled means

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with as_partitioner().

Pass partitioner objects to the partitioner argument of partition().

part_pc1() uses the following direct-measure-reduce approach:

- direct: direct_distance(), Minimum Distance
- measure: measure_variance_explained(), Variance Explained (PCA)
- reduce: reduce_first_component(), First Principal Component

Usage

```
part_pc1(spearman = FALSE)
```

Arguments

spearman

logical. Use Spearman's correlation for distance matrix?

Value

```
a partitioner
```

```
Other partitioners: as_partitioner(), part_icc(), part_kmeans(), part_minr2(), part_stdmi(), replace_partitioner()
```

part_stdmi 27

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition using part_pc1()
partition(df, threshold = .6, partitioner = part_pc1())</pre>
```

part_stdmi

Partitioner: distance, mutual information, scaled means

Description

Partitioners are functions that tell the partition algorithm 1) what to try to reduce 2) how to measure how much information is lost from the reduction and 3) how to reduce the data. In partition, functions that handle 1) are called directors, functions that handle 2) are called metrics, and functions that handle 3) are called reducers. partition has a number of pre-specified partitioners for agglomerative data reduction. Custom partitioners can be created with as_partitioner().

Pass partitioner objects to the partitioner argument of partition().

part_stdmi() uses the following direct-measure-reduce approach:

- direct: direct_distance(), Minimum Distance
- measure: measure_std_mutualinfo(), Standardized Mutual Information
- reduce: reduce_scaled_mean(), Scaled Row Means

Usage

```
part_stdmi(spearman = FALSE)
```

Arguments

spearman

logical. Use Spearman's correlation for distance matrix?

Value

```
a partitioner
```

```
Other partitioners: as_partitioner(), part_icc(), part_kmeans(), part_minr2(), part_pc1(), replace_partitioner()
```

28 plot_area_clusters

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition using part_stdmi()
partition(df, threshold = .6, partitioner = part_stdmi())</pre>
```

permute_df

Permute a data set

Description

permute_df() permutes a data set: it randomizes the order within each variable, which breaks any association between them. Permutation is useful for testing against null statistics.

Usage

```
permute_df(.data)
```

Arguments

.data

 $a \; \mathsf{data.frame}$

Value

```
a permuted data.frame
```

Examples

```
permute_df(iris)
```

plot_area_clusters

Plot partitions

Description

plot_stacked_area_clusters() and plot_area_clusters() plot the partition against a permuted partition. plot_ncluster() plots the number of variables per cluster. If .partition is the result of map_partition() or test_permutation(), plot_ncluster() facets the plot by each partition. plot_information() plots a histogram or density plot of the information of each variable in the partition. If .partition is the result of map_partition() or test_permutation(), plot_information() plots a scatterplot of the targeted vs. observed information with a 45 degree line indicating perfect alignment.

plot_area_clusters 29

Usage

```
plot_area_clusters(
  .data,
  partitioner = part_icc(),
  information = seq(0.1, 0.5, length.out = 25),
  obs\_color = "#E69F00",
 perm_color = "#56B4E9"
)
plot_stacked_area_clusters(
  .data,
  partitioner = part_icc(),
  information = seq(0.1, 0.5, length.out = 25),
 stack_colors = c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00")
)
plot_ncluster(
  .partition,
  show_n = 100,
  fill = "#0172B1",
  color = NA,
  labeller = "target information:"
)
plot_information(
  .partition,
  fill = "#0172B1",
  color = NA,
  geom = ggplot2::geom_density
)
```

Arguments

```
.data
                  a data.frame to partition
                  a partitioner. See the part_*() functions and as_partitioner().
partitioner
information
                  a vector of minimum information to fit in partition()
                  arguments passed to partition()
obs_color
                  the color of the observed partition
                  the color of the permuted partition
perm_color
stack_colors
                  the colors of the cluster sizes
.partition
                  either a partition or a tibble, the result of map_partition() or test_permutation()
show_n
                  the number of reduced variables to plot
fill
                  the color of the fill for geom
```

30 plot_permutation

```
color the color of the geom
labeller the facet label
geom the geom to use. The default is geom_density.
```

Value

```
a ggplot
```

Examples

```
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
df %>%
    partition(.6, partitioner = part_pc1()) %>%
    plot_ncluster()
```

plot_permutation

Plot permutation tests

Description

plot_permutation() takes the results of test_permutation() and plots the distribution of permuted partitions compared to the observed partition.

Usage

```
plot_permutation(
   permutations,
   .plot = c("information", "nclusters", "nreduced"),
   labeller = "target information:",
   perm_color = "#56B4EA",
   obs_color = "#CC78A8",
   geom = ggplot2::geom_density
)
```

Arguments

permutations a tibble, the result of test_permutation()

.plot the variable to plot: observed information, the number of clusters created, or the number of observed variables reduced

labeller the facet label

perm_color the color of the permutation fill

obs_color the color of the observed statistic line

geom the geom to use. The default is geom_density.

reduce_cluster 31

Value

a ggplot

reduce_cluster

Reduce a target

Description

reduce_cluster() and map_cluster() apply the data reduction to the targets found in the director step. They only do so if the metric is above the threshold, however. reduce_cluster() is for functions that return vectors while map_cluster() is for functions that return data.frames. If you're using as_reducer(), there's no need to call these functions directly.

Usage

```
reduce_cluster(.partition_step, .f, first_match = FALSE)
map_cluster(.partition_step, .f, rewind = FALSE, first_match = FALSE)
```

Arguments

Value

```
a partition_step object
```

```
reduce_row_means <- function(.partition_step, .data) {
  reduce_cluster(.partition_step, rowMeans)
}

replace_partitioner(
  part_icc,
  reduce = reduce_row_means
)</pre>
```

32 reduce_kmeans

```
reduce_first_component
```

Reduce selected variables to first principal component

Description

Reducers are functions that tell the partition algorithm how to reduce the data. as_reducer() is a helper function to create new reducers to be used in partitioners. partitioners can be created with as_partitioner().

reduce_first_component() returns the first component from the principal components analysis of the target variables.

Usage

```
reduce_first_component(.partition_step)
```

Arguments

Value

```
a partition_step object
```

See Also

Other reducers: as_reducer(), reduce_kmeans(), reduce_scaled_mean()

reduce_kmeans

Reduce selected variables to scaled means

Description

Reducers are functions that tell the partition algorithm how to reduce the data. as_reducer() is a helper function to create new reducers to be used in partitioners. partitioners can be created with as_partitioner().

reduce_kmeans() is efficient in that it doesn't reduce until the closest k to the information threshold is found.

Usage

```
reduce_kmeans(.partition_step, search = c("binary", "linear"), n_hits = 4)
```

reduce_scaled_mean 33

Arguments

.partition_step

a partition_step object

search The search method. Binary search is generally more efficient but linear search

can be faster in very low dimensions.

n_hits In linear search method, the number of iterations that should be under the thresh-

old before reducing; useful for preventing false positives.

Value

```
a partition_step object
```

See Also

```
Other reducers: as_reducer(), reduce_first_component(), reduce_scaled_mean()
```

reduce_scaled_mean

Reduce selected variables to scaled means

Description

Reducers are functions that tell the partition algorithm how to reduce the data. as_reducer() is a helper function to create new reducers to be used in partitioners. partitioners can be created with as_partitioner().

reduce_scaled_mean() returns the scaled row means of the target variables to reduce.

Usage

```
reduce_scaled_mean(.partition_step)
```

Arguments

Value

```
a partition_step object
```

```
Other reducers: as_reducer(), reduce_first_component(), reduce_kmeans()
```

34 replace_partitioner

replace_partitioner

Replace the director, metric, or reducer for a partitioner

Description

Replace the director, metric, or reducer for a partitioner

Usage

```
replace_partitioner(partitioner, direct = NULL, measure = NULL, reduce = NULL)
```

Arguments

```
partitioner a partitioner

direct a function that directs, possibly created by as_director()

measure a function that measures, possibly created by as_measure()

reduce a function that reduces, possibly created by as_reducer()
```

Value

```
a partitioner
```

See Also

```
Other partitioners: as_partitioner(), part_icc(), part_kmeans(), part_minr2(), part_pc1(), part_stdmi()
```

```
replace_partitioner(
  part_icc,
  reduce = as_reducer(rowMeans)
)
```

scaled_mean 35

scaled_mean

Average and scale rows in a data.frame

Description

scaled_mean() calculates scaled row means for a dataframe.

Usage

```
scaled_mean(.x, method = c("r", "c"))
```

Arguments

```
.x a data.frame
```

method The method source: both the pure R and C++ versions are efficient

Value

a numeric vector

Examples

```
library(dplyr)
iris %>%
  select_if(is.numeric) %>%
  scaled_mean()
```

simulate_block_data

Simulate correlated blocks of variables

Description

simulate_block_data() creates a dataset of blocks of data where variables within each block are correlated. The correlation for each pair of variables is sampled uniformly from lower_corr to upper_corr, and the values of each are sampled using MASS::mvrnorm().

Usage

```
simulate_block_data(
  block_sizes,
  lower_corr,
  upper_corr,
  n,
  block_name = "block",
  sep = "_",
  var_name = "x"
)
```

36 super_partition

Arguments

a vector of block sizes. The size of each block is the number of variables within it.

lower_corr the lower bound of the correlation within each block upper_corr the upper bound of the correlation within each block

n the number of observations or rows block_name description prepended to the variable to indicate the block it belongs to sep a character, what to separate the variable names with var_name the name of the variable within the block

Value

a tibble with sum(block_sizes) columns and n rows.

Examples

```
# create a 100 x 15 data set with 3 blocks
simulate_block_data(
   block_sizes = rep(5, 3),
   lower_corr = .4,
   upper_corr = .6,
   n = 100
)
```

super_partition

super_partition

Description

super_partition implements the agglomerative, data reduction method Partition for datasets with large numbers of features by first 'super-partitioning' the data into smaller clusters to Partition.

Usage

```
super_partition(
  full_data,
  threshold = 0.5,
  cluster_size = 4000,
  partitioner = part_icc(),
  tolerance = 1e-04,
  niter = NULL,
  x = "reduced_var",
   .sep = "_",
  verbose = TRUE,
  progress_bar = TRUE
)
```

super_partition 37

Arguments

full_data	sample by feature data frame or matrix
threshold	the minimum proportion of information explained by a reduced variable; threshold sets a boundary for information loss because each reduced variable must explain at least as much as threshold as measured by the metric.
cluster_size	maximum size of any single cluster; default is 4000
partitioner	a partitioner. See the part_*() functions and as_partitioner().
tolerance	a small tolerance within the threshold; if a reduction is within the threshold plus/minus the tolerance, it will reduce.
niter	the number of iterations. By default, it is calculated as 20% of the number of variables or 10, whichever is larger.
Х	the prefix of the new variable names; must not be contained in any existing data names
.sep	a character vector that separates x from the number (e.g. "reduced_var_1").
verbose	logical for whether or not to display information about super partition step; default is TRUE
progress_bar	logical for whether or not to show progress bar; default is TRUE

Details

super_partition scales up partition with an approximation, using Genie, a fast, hierarchical clustering algorithm with similar qualities of those to Partition, to first super-partition the data into ceiling(N/c) clusters, where N is the number of features in the full dataset and c is the user-defined maximum cluster size (default value = 4,000). Then, if any cluster from the super-partition has a size greater than c, use Genie again on that cluster until all cluster sizes are less than c. Finally, apply the Partition algorithm to each of the super-partitions.

It may be the case that large super-partitions cannot be easily broken with Genie due to high similarity between features. In this case, we use k-means to break the cluster.

Value

Partition object

Author(s)

Katelyn Queen, <kjqueen@usc.edu>

References

Barrett, Malcolm and Joshua Millstein (2020). partition: A fast and flexible framework for data reduction in R. Journal of Open Source Software, 5(47), 1991, https://doi.org/10.21105/joss.01991Millstein J, Battaglin F, Barrett M, Cao S, Zhang W, Stintzing S, et al. Partition: a surjective mapping approach for dimensionality reduction. *Bioinformatics* **36** (2019) 676–681. doi:10.1093/bioinformatics/btz661.

Gagolewski, Marek, Maciej Bartoszuk, and Anna Cena. "Genie: A new, fast, and outlier-resistant hierarchical clustering algorithm." Information Sciences 363 (2016): 8-23.

38 test_permutation

Millstein, Joshua, Francesca Battaglin, Malcolm Barrett, Shu Cao, Wu Zhang, Sebastian Stintzing, Volker Heinemann, and Heinz-Josef Lenz. 2020. "Partition: A Surjective Mapping Approach for Dimensionality Reduction." *Bioinformatics* 36 (3): https://doi.org/676–81.10.1093/bioinformatics/btz661.

See Also

```
partition()
```

Examples

```
set.seed(123)
df <- simulate_block_data(c(15, 20, 10), lower_corr = .4, upper_corr = .6, n = 100)
# don't accept reductions where information < .6
prt <- super_partition(df, threshold = .6, cluster_size = 30)
prt</pre>
```

test_permutation

Permute partitions

Description

test_permutation() permutes data and partitions the results to generate a distribution of null statistics for observed information, number of clusters, and number of observed variables reduced to clusters. The result is a tibble with a summary of the observed data results and the averages of the permuted results. The partitions and and permutations are also available in list-cols. test_permutation() tests across a range of target information values, as specified in the information argument.

Usage

```
test_permutation(
   .data,
   information = seq(0.1, 0.6, by = 0.1),
   partitioner = part_icc(),
   ...,
   nperm = 100
)
```

Arguments

test_permutation 39

Value

a tibble with summaries on observed and permuted data (the means of the permuted summaries), as well as list-cols containing them

Index

* datasets	baxter_data_dictionary(baxter_data), 8							
baxter_data, 8	<pre>baxter_family (baxter_data), 8</pre>							
* directors	baxter_genus (baxter_data), 8							
as_director, 3	baxter_otu (baxter_data), 8							
direct_distance, 9								
direct_k_cluster, 10	corr, 9							
* metrics								
as_measure, 4	$direct_distance, 3, 9, 11$							
measure_icc, 16	direct_distance_pearson							
<pre>measure_min_icc, 17</pre>	(direct_distance), 9							
<pre>measure_min_r2, 17</pre>	direct_distance_spearman							
<pre>measure_std_mutualinfo, 18</pre>	(direct_distance), 9							
<pre>measure_variance_explained, 19</pre>	direct_k_cluster, <i>3</i> , <i>10</i> , 10							
* partitioners	Ciltura and and 11							
as_partitioner, 5	filter_reduced, 11							
part_icc, 23	fitted.partition(partition_scores), 22							
part_kmeans, 24	icc, 12							
part_minr2, 25	is_partition, 13							
part_pc1, 26	is_partition_step, 14							
part_stdmi, 27	is_partitioner, 13							
replace_partitioner, 34	13_pai tittoner, 13							
* reducers	kmeans(), <i>11</i> , <i>24</i>							
as_reducer, 7								
<pre>reduce_first_component, 32</pre>	<pre>map_cluster (reduce_cluster), 31</pre>							
reduce_kmeans, 32	map_partition, 15							
reduce_scaled_mean, 33	$map_partition(), 28, 29$							
	<pre>mapping_groups (mapping_key), 14</pre>							
as_director, 3, 10, 11	mapping_key, 14							
as_director(), 3, 5, 9, 10, 34	MASS::mvrnorm(), 35							
as_measure, 4, <i>16-19</i>	measure_icc, 4, 16, 17-19							
as_measure(), 4, 5, 16-19, 34	measure_min_icc, 4, 16, 17, 18, 19							
as_partition_step, 6	measure_min_r2, 4, 16, 17, 17, 18, 19							
as_partitioner, 5, 23-27, 34	measure_std_mutualinfo, 4, 16-18, 18, 19							
as_partitioner(), 3-7, 9, 10, 16-21, 23-27,	measure_variance_explained, 4, 16-18, 19							
29, 32, 33, 37	mutual_information, 19							
as_reducer, 7, 32, 33	<pre>mutual_information(), 18</pre>							
as_reducer(), 5, 7, 31–34	_							
	part_icc, 5, 23, 24-27, 34							
baxter_clinical (baxter_data), 8	part_icc(), <i>15</i> , <i>21</i> , <i>38</i>							
baxter_data, 8	part_kmeans, 5, 23, 24, 25-27, 34							

INDEX 41

```
part_kmeans(), 21
part_minr2, 5, 23, 24, 25, 26, 27, 34
part_minr2(), 21
part_pc1, 5, 23-25, 26, 27, 34
part_pc1(), 21
part_stdmi, 5, 23-26, 27, 34
part_stdmi(), 21
partition, 20
partition(), 5, 15, 23–27, 29, 38
partition_scores, 22
\texttt{permute\_df}, \textcolor{red}{28}
plot_area_clusters, 28
plot_information(plot_area_clusters),
plot_ncluster (plot_area_clusters), 28
plot_permutation, 30
plot_stacked_area_clusters
         (plot_area_clusters), 28
reduce_cluster, 31
reduce_first_component, 7, 32, 33
reduce_kmeans, 7, 32, 32, 33
reduce_scaled_mean, 7, 32, 33, 33
replace_partitioner, 5, 23-27, 34
replace_partitioner(), 21
scaled_mean, 35
simulate_block_data, 35
super_partition, 36
test\_permutation, 38
test_permutation(), 28-30
unnest_mappings (mapping_key), 14
unnest_reduced (filter_reduced), 11
```